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a b s t r a c t 

We identify a yield news shock as an innovation that does not move Treasury yields con- 

temporaneously but explains a maximum share of their future variation. Yields do not 

immediately respond to the news shock as the initial reaction of term premiums and ex- 

pected short rates offset each other. While the impact on term premiums fades quickly, 

expected short rates and thus yields decline persistently. As a result, the shock explains a 

staggering 50% of Treasury yield variation several years out. A positive yield news shock is 

associated with a coincident sharp increase in stock and bond market volatility, a contem- 

poraneous response of leading economic indicators, and is followed by a persistent decline 

of real activity and inflation which is accommodated by the Federal Reserve. Identified 

shocks to realized stock market volatility and business cycle news imply similar impulse 

responses and together capture the bulk of variation of the yield news shock. 
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1. Introduction 

Government bonds play a benchmark role in finan- 

cial markets and are therefore key to understanding the 

transmission of shocks in the economy. While much of 

the previous literature has studied the factor structure 

in government bond yields and the interaction of the 

term structure factors with macroeconomic aggregates, 

surprisingly little effort has been devoted to understand- 

ing the sources of yield curve variation. In this paper, 

we aim to fill this gap by identifying the shocks that 

move Treasury yields, and by studying the macroeconomic 

and financial market dynamics associated with these 

shocks. 

The comovement among large panels of macroe- 

conomic and financial time series has been shown to 

be well captured by a small number of factors (e.g., 
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1 While our identification of a yield news shock is in the tradition of 

the macroeconomic news shocks literature, other recent work (for exam- 

ple Altavilla et al., 2017; Gurkaynak et al., 2020 ) uses high-frequency Trea- 

sury yield data and event-study approaches to measure the news embed- 
Sargent and Sims, 1977; Forni et al., 20 0 0; Stock and

Watson, 2002a,b ). Similarly, the variation of government

bond yields of different maturities is also known to be

summarized by only a few factors ( Garbade, 1996; Lit-

terman and Scheinkman, 1991; Diebold and Li, 2006 ).

We can therefore characterize the common dynamics of

macroeconomic variables and Treasury yields in a dynamic

factor model (DFM) where the macroeconomic and yield

curve factors follow a joint vector autoregression. This

allows us to identify the innovations driving yield curve

variation, and to study the responses of a large number

of macroeconomic and financial variables to these innova-

tions in a unified framework. The bulk of the comovement

among government bond yields is captured by the first

two principal components, commonly referred to as level

and slope. Innovations to the level factor result in parallel

shifts and innovations to the slope factor in a flattening or

steepening of the yield curve. Combined, they explain al-

most all of the short-term variation of yields. However, we

show that these innovations together account for at most

half of the variation of Treasury yields several years out. 

What drives yield curve variation at these longer hori-

zons? Recent studies have argued that there are factors

which help to predict future bond yields but are not (well)

spanned by the cross-section of contemporaneous yields.

Cochrane and Piazzesi (2005) document that a linear

combination of forward rates has strong forecasting power

for bond returns but is only weakly correlated with yields

contemporaneously. Ludvigson and Ng (2009) show that

factors extracted from a large panel of macroeconomic and

financial time series also predict bond returns well. Duffee

(2011) uses Kalman filtering techniques to identify a linear

combination of yields which has almost no immediate but

a strong delayed impact on yields. Joslin et al. (2014) doc-

ument that real economic growth and inflation contain

predictive information about future bond yields over and

above their first three principal components. Feunou and

Fontaine (2018) show that a term stucture model with

non-Markovian risk factors matches well the empirical

observation that higher order yield principal components

have incremental predictive power for future yields. Taken

together, this evidence strongly suggests the existence of

shocks which are orthogonal to the yield curve contempo-

raneously but which move bond yields with some delay. 

Conceptually, such shocks would be similar to news

shocks identified in the macroeconomic literature. Several

authors have documented a delayed and persistent re-

sponse of total factor productivity (TFP) to news shocks,

see for example Beaudry and Portier (2006) and Barsky

et al. (2015) . Barsky and Sims (2011) identify a produc-

tivity news shock as the innovation orthogonal to current

TFP that best explains variation in future TFP. Their iden-

tification strategy maximizes the forecast error variance

(FEV) of TFP in a small-scale vector autoregression (VAR)

subject to some orthogonality constraint. We use the same

idea to identify a yield news shock which is hidden by

contemporaneous Treasury yields but best explains their

future variation. Specifically, we identify the innovation

that jointly maximizes the equally-weighted forecast error

variance shares of level and slope over the next year, but
1017 
is orthogonal to the innovations which affect these two 

factors contemporaneously. 1 

Combined, the three shocks explain essentially all 

of the variation of yields. While the news shock does 

not move yields initially, it explains a staggering 50% of 

their variation at forecast horizons up to three years out. 

Consistent with the previous literature on hidden factors 

in the term structure, a positive yield news shock initially 

moves the expected future short rate and term premium 

components of Treasury yields in opposite directions. 

While the term premium response dies out relatively 

quickly, expected future short rates and with them yields 

continue to fall over subsequent years. A positive yield 

news shock is also associated with sharp increases in 

implied stock and bond market volatility, falling stock 

prices, and large contemporaneous responses of leading 

business cycle indicators, followed by a protracted decline 

of real activity and inflation. The Federal Reserve responds 

by persistently lowering the policy rate, which in turn 

feeds through to persistently lower expected future short 

rates and Treasury yields. 

The sharp contemporaneous response of stock and 

bond market volatility to the identified yield news shock 

and the following decline of real activity suggest that 

broader financial market volatility may be a key driver of 

persistent yield curve variation. To verify this conjecture, 

we explicitly identify shocks that explain a maximum 

share of near-term variation in measures of implied and 

realized stock market volatility. We find a striking simi- 

larity of the impulse responses to these volatility shocks 

and the yield news shock, and show that they are highly 

correlated. In a recent paper, Berger et al. (2020) use a 

measure of realized stock market volatility along with 

the option-implied volatility index VXO to disentangle 

innovations to the realization of volatility from those to 

uncertainty about future stock prices. They document that 

it is innovations to realized rather than to expected future 

volatility that strongly affect macroeconomic aggregates. 

In line with their results we show that shocks to realized 

volatility and not those to forward-looking uncertainty 

drive persistent yield curve variation. 

The yield news shock is also associated with a strong 

contemporaneous response of leading business cycle in- 

dicators. We identify a business cycle news shock as the 

innovation that explains a maximum share of the forecast 

error variances of leading indicators over the next year. 

This shock implies similar impulse responses as the yield 

news and realized volatility shocks, and has a persistent 

effect on expected short rates and yields despite having 

only a modest impact on inflation. 

While the realized volatility and business cycle news 

shocks are positively correlated with one another and with 

the yield news shock, together they explain only about 

three quarters of its variance. To understand the residual 
ded in macroeconomic releases and studies their effect on financial mar- 

kets and the macroeconomy. 
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source of Treasury yield variation, we identify a yield

news shock that maximizes the forecast error variance of

level and slope over the next year but is orthogonal to

shocks to level, slope, realized volatility and business cycle

news. Although this shock carries little residual informa-

tion about financial market volatility and real activity, it

explains economically and statistically significant shares of

Treasury yield variation. We show that this residual yield

news shock is associated with movements in international

sovereign bond markets, suggesting that global bond yield

dynamics also contribute to persistent Treasury yield

variation. 

Our analysis is related to various strands of the litera-

ture on the forecastability and the economic driving forces

of government bond yields. The paper most closely related

to ours is Kurmann and Otrok (2013) . These authors

identify a news shock to the slope of the term structure

of interest rates and trace its impact on macroeconomic

variables in a small-scale VAR. They find that news about

the yield curve slope is positively correlated with news

about future TFP. While the two analyzes are clearly

related, there are a number of important differences. First,

we identify a news shock which maximizes the forecast

error variance of level and slope as opposed to only the

term structure slope. Since the level factor represents by

far the most important dimension of yield comovement,

our yield news shock explains a much larger share of

yield variation than the slope news shock of Kurmann and

Otrok. The second key difference is that we can trace the

impulse responses of a wide range of macroeconomic and

financial time series in our DFM approach. This allows for

a broad economic interpretation of the identified shocks.

Our results imply that financial market volatility and news

about the near-term economic outlook are more important

drivers of yields than news about future productivity. In a

robustness analysis, we identify a slope news shock à la

Kurmann and Otrok (2013) and show that it has similar

properties as the contemporaneous shock to the slope

factor to which our yield news shock is orthogonal by

construction. 

Our finding that hightened financial market volatility

is associated with a decline of expected short rates and

an increase of term premiums is broadly consistent with

several structural models of the term structure. Bianchi

et al. (2019) propose a model with regime-switching

uncertainty about aggregate demand and supply. They find

that both types of uncertainty shocks lead to lower short

rates and higher term premiums for longer-term bonds.

Andreasen (2019) builds a model with autoregressive

stochastic volatility which predicts an increase of term

premiums in response to higher volatility. Amisano and

Tristani (2019) propose a model with regime shifts in

the conditional variance of productivity shocks. In their

model, an increase in uncertainty raises term premiums

and lowers expected real rates via a precautionary savings

motive. In line with our findings, in these theories surprise

innovations to volatility raise future uncertainty which

leads to a drop in economic activity, lower short-term

interest rates and higher term premiums. However, none

of the aforementioned papers discusses the spanning

(or, rather, the lack thereof) of shocks to volatility by
1018 
contemporaneous yields, which is a key insight of our 

paper. Moreover, this literature also does not differentiate 

between contemporaneous shocks to volatility and inde- 

pendent shocks to expectations of future volatility, which 

we show to have very different effects on yields and other 

financial market indicators. 

Our empirical results show a strong correlation of the 

yield news shock with a business cycle news shock. To the 

best of our knowledge, there is no structural model of the 

term structure of interest rates which incorporates such a 

shock. The closest equivalent to our business cycle news 

shocks in the macro literature is what Angeletos et al. 

(2018, 2020) refer to as confidence shocks. These shocks 

represent news about the near-term economic outlook 

which have little effect on longer-term output and on 

inflation but are a key driver of business cycles. In the 

model of Angeletos et al. (2018) , a negative confidence 

shock leads to a temporary decline of wages and income 

which entails a weak wealth effect but a relatively strong 

substitution effect. Households respond by working less 

and by reducing both consumption and saving. Variation in 

confidence then generates positive co-movement between 

employment, output, consumption, and investment at the 

business-cycle frequency, similar to the effects of uncer- 

tainty shocks in the papers discussed above. As a result, 

negative news about the business cycle lead to persistently 

lower short rates, in line with our empirical results. 

Our econometric approach builds on the literature that 

extends structural VAR methods to DFMs, see for exam- 

ple Forni et al. (2009) , Forni and Gambetti (2010) , and 

Stock and Watson (2016) . Using a DFM, we consistently 

estimate the common and idiosyncratic components of a 

large number of variables. We then apply structural VAR 

methods to the innovations of the estimated factors to 

identify structural shocks based on a rich information set, 

and without the confounding influence of measurement 

errors and idiosyncratic variations. 

The remainder of the paper is organized as follows. 

Section 2 presents our model and explains the identifi- 

cation of the yield news shock. Section 3 describes the 

data and details the estimation and model selection. Our 

empirical results, including several robustness analyzes, 

are documented in Section 4 . Section 5 concludes. 

2. Econometric methodology 

In this section, we present our econometric method- 

ology. We first describe the dynamic factor model which 

we use to summarize the joint dynamics of the Treasury 

yield curve and the U.S. macroeconomy. We then discuss 

our identification of shocks, which extends prior work on 

structural VARs following Uhlig (2003) to DFMs. 

2.1. Model 

We model the variation of a large number of macroe- 

conomic and financial variables as well as Treasury yields 

using the DFM given by 

X t = �F t + e t , (1) 

for t = 1 , ..., T , where X t denotes the N × 1 vector of ob- 

served time series, the factors in the r × 1 vector F t capture 
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the common sources of variation among the variables X ,

� is the matrix of factor loadings, and e t is a vector of

idiosyncratic components. We further assume that the

factors F t follow a VAR: 

�(L ) F t = ηt , (2)

where �(L ) = I − �1 L − · · · − �p L 
p is a lag polynomial

matrix, and ηt is the vector of factor innovations with

mean zero and variance-covariance matrix �η . From Eqs.

(1) and (2) , we obtain the reduced-form moving average

representation which expresses X t in terms of current and

past values of innovations 

X t = ��(L ) −1 ηt + e t . (3)

Dynamic factor models of this form were first popularized

by Stock and Watson (2002a,b) and have since become a

workhorse tool to study the joint dynamics of large sets of

macroeconomic and financial time series. Several authors

( Joslin et al., 2014; Coroneo et al., 2016 ) have pointed out

that macroeconomic factors that are not spanned by yields

contemporaneously have strong forecasting power for

future yields. To assess the importance of macroeconomic

information in identifying shocks which move Treasury

yields, we therefore estimate two specifications. One is an

only-yields DFM with factors extracted exclusively from

yields. Our baseline specification is a macro-yields model

where we augment the yields with a large number of

macroeconomic and financial variables and estimate a

second set of factors driving these variables. 

In DFMs, because the factors and their loadings are

unobserved, the space spanned by the factors is identified,

but the factors themselves are not ( �F t = �G 

−1 GF t , where

G is any invertible r × r matrix). Therefore, a normalization

must be imposed. In our application of DFMs to the

identification of a yield news shock, we use the following

normalization 

X t = 

[
Y t 
Z t 

]
= 

[
�Y Y 0 n ×(r−m ) 

�ZY �ZZ 

][
F Y t 

F Z t 

]
+ e t . (4)

Here, Y t denotes the n × 1 vector of Treasury yields

with common dynamics captured by the m × 1 vector

of factors F Y t with loadings �Y Y , and Z t denotes the re-

maining macroeconomic and financial variables which are

driven by F Y t and an additional set of factors F Z t with the

corresponding loadings �ZY and �ZZ . This block-lower-

triangular normalization has also been used in Coroneo

et al. (2016) . A key advantage of imposing this block-

lower-triangular normalization on the factor loadings � in

the macro-yields model is that the yield factors have the

same interpretation across the two model specifications. 

2.2. Identifying a yield news shock 

We assume that the innovations ηt summarizing the

joint dynamics among the variables in X t are linear com-

binations of structural shocks, denoted by the r × 1 vector

νt : 

ηt = Hνt . (5)

The structural shocks νt have the variance-covariance ma-

trix �ν . Under the unit standard deviation normalization
1019 
( �ν = I), one can write any matrix H as H = Chol(�η) Q

where Q is a r × r orthonormal matrix ( Q 

′ Q = I), and 

hol denotes the Cholesky factorization. This implies the 

structural moving average representation 

X t = C (L ) Qνt + e t , with C (L ) = ��(L ) −1 Chol(�η) , (6) 

where the impulse response function of X t with respect to 

the i th shock is given by C(L ) Q i with Q i denoting the i th 

column of Q . Any potential mapping from the structural 

shocks νt to the innovations ηt can thus be captured by a 

choice of the matrix Q . 

Under the normalization in Eq. (4) , the moving average 

representation of the factor VAR is 

F t = 

[
F Y t 

F Z t 

]
= 

[
D Y (L ) 
D Z ( L ) 

]
Q νt = D (L ) Q νt , (7) 

where D (L ) = �(L ) −1 Chol(�η) , and the second expression 

partitions the lag polynomial similarly to F t . Let D k denote 

the k th lag matrix in D (L ) such that D k,i Q j is the effect of 

the j th shock on the i th element of F t after k periods. 

In the application below, we seek to identify as few 

shocks as possible that summarize the common dynamics 

of Treasury yields. Let level and slope be the first two 

factors. We separate a yield news shock from contempora- 

neous shocks to level and slope by imposing the short-run 

timing restrictions: [ 

ηLe v el 
t 

ηSlope 
t 

η3: rt 

] 

= 

[ 

H 11 0 0 

H 21 H 22 0 

H •1 H •2 H ••

] [ 

νLe v el 
t 

νSlope 
t 

ν3: rt 

] 

, (8) 

where H 11 , H 21 and H 22 are scalars. These restrictions 

deliver a recursive identification scheme which has also 

been used by other authors to identify shocks to yield 

curve factors, see for example Diebold et al. (2006) and 

Bianchi et al. (2009) . 

We seek to identify a yield news shock as the innova- 

tion which explains a maximum share of future variation 

of the yield curve level and slope, but does not move 

these two factors on impact. Letting the news shock be 

indexed by three, this is done by solving the following 

optimization problem 

argmax 
Q 3 

2 ∑ 

i =1 

∑ h −1 
k =0 

(
D k,i Q 3 

)2 

var ( F it+ h | F t , F t−1 , . . . ) 
, (9) 

subject to two constraints: ( i ) Q 

′ 
3 
Q 3 = 1 , ( ii ) H i j = 0 , for i =

1 , . . . , 2 and j = 3 , . . . , r. The first constraint ensures that 

Q 3 is an orthonormal vector. The second constraint im- 

poses the restrictions (8) on the matrix H so that the 

third shock does not affect the first two factors within 

the same period. The solution to this problem is char- 

acterized by an eigenvector associated with the first 

eigenvalue of the lower (r − 2) × (r − 2) block of the 

matrix 
∑ h −1 

k =0 

(
D 

′ 
k, 1:2 

S 2 ×2 D k, 1:2 

)
, where D k, 1:2 denotes the 

first two rows of D k , and S 2 ×2 is a diagonal matrix with 

entries var 
(
F it+ h | F t , F t−1 , . . . 

)−1 
for i = 1 , 2 . In our empirical 

analysis, we set h = 12 and thus maximize the explanatory 

power of the yield news shock for future yields at the one 

year horizon. 
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Our approach to identify a yield news shock as the

innovation which explains the maximum share of vari-

ation of Treasury yields Y t follows Uhlig (2003) who

originally proposed a similar shock identification strategy

in the context of structural VARs. The method has also

been applied to identify news shocks about future TFP

( Barsky and Sims, 2011; Forni et al., 2014 ), shocks to

the yield curve slope ( Kurmann and Otrok, 2013 ), and

technology shocks ( Francis et al., 2014 ), among others. Our

approach translates the notion of “hidden” ( Duffee, 2011 )

or “unspanned” ( Joslin et al., 2014 ) factors in the term

structure of interest rates into a shock rather than a factor

identification strategy. 

3. Empirical implementation 

In this section, we first describe the data used in our

empirical analysis, then summarize the individual steps to

obtain estimates and standard errors, and discuss model

selection. 

3.1. Data 

Our data are monthly and cover the sample period

from July 1962 to June 2019. We summarize the Treasury

yield curve using 109 yields on zero-coupon Treasuries

with maturities from 12 to 120 months. We obtain these

as end-of-month observations from Gurkaynak et al.

(2007) . We further include the expected average future

short rate and term premium components for the yields

with maturities 24, 60 and 120 months based on the

model by Adrian et al. (2013 , henceforth ACM). 

In the macro-yields specification, we augment these

yields and yield components with a large set of macroe-

conomic and financial time series covering the most

important categories of U.S. economic activity. We obtain

these from the FRED-MD database compiled by McCracken

and Ng (2016) . We further include average weekly hours of

production and non-supervisory employees; the Philadel-

phia Fed leading indicator for the U.S. economy; the VXO

index which measures volatility implied in S&P100 op-

tions; the measure of realized stock market volatility from

Berger et al. (2020) extended to the end of our sample

(RVol); the Bank of America Merrill Lynch MOVE bond

volatility index, which captures implied volatility from a

basket of Treasury options; a measure of financial uncer-

tainty from Ludvigson et al. (2021 , henceforth LMN); the

excess bond premium from Gilchrist and Zakrajšek (2012 ,

henceforth GZ); and the three-Month Treasury bill forecast

from the Consensus Economics Survey of Professional

Forecasters. Of the 135 series, 125 are available from July

1962 to June 2019. A complete list of macroeconomic and

financial variables is provided in the Online Appendix. 

3.2. Estimation and standard errors 

We estimate the model using a two-step approach.

First, we estimate the yield curve factors F Y t as principal

components of the set of 109 Treasury yields. For the

macro-yields model, we augment the estimates of F Y t with
1020 
macroeconomic factors. We normalize these to be uncondi- 

tionally orthogonal to the yield curve factors by regressing 

the macroeconomic variables on the estimate of F Y t , and 

then computing principal components of the residuals. 

This estimation procedure resembles that of FAVARs as de- 

scribed by Stock and Watson (2016) , where the estimates 

of F Y t are treated as observed. It ensures that the yield 

factor loadings �Y Y are identical in both models and that 

the first two yield principal components have the interpre- 

tation as level and slope in both specifications. As a second 

step, given the estimated set of factors, we estimate factor 

VARs with the lag order selected by BIC with 1 ≤ p ≤ 12 . 

To compute standard errors for the impulse response 

functions and forecast error variance decompositions, we 

use a parametric bootstrap following Stock and Watson 

(2016) , which proceeds with the following steps: (1) Es- 

timate �, F t , �(L ) , �η and the idiosyncratic vector of 

residuals ˆ e t = X t − ˆ � ˆ F t ; (2) Estimate univariate ARs for 

idiosyncratic residuals, ˆ e it = αi (L ) ̂ e it−1 + u it ; (3) Generate 

random draws ˜ ηt 
iid ∼ N(0 , ˆ �η) and ˜ u it 

iid ∼ N(0 , ˆ σ 2 
i 
) and use 

them to generate bootstrap data as ˜ X t = 

ˆ � ˜ F t + ̃  e t with 

ˆ �(L ) ̃  F t = ˜ ηt and ˜ e it = ˆ αi (L ) ̃ e it + ˜ u it ; (4) Estimate the model 

parameters, impulse response functions and forecast error 

variance decompositions; (5) Repeat steps (3)-(4) for 500 

bootstrap replications and compute the standard errors. 

3.3. Model selection 

Stock and Watson (2002a) show that the space spanned 

by the factors can be constructed by principal components 

analysis when N and T are large and the number of prin- 

cipal components is equal to or greater than the number 

of factors r. The number of factors can be consistently 

estimated when N and T are large using the criteria from 

Bai and Ng (2002) . These balance the benefit of adding a 

factor against the cost of increased sampling variability. 

Crump and Gospodinov (2022) note that estimation of 

the true number of yield curve factors may be empirically 

problematic for two reasons. First, since yields are highly 

persistent time series, estimates of the number of factors 

could be overstated. Second, the fact that yields represent 

cross-sectional averages of one-period forward rates could 

lead to a spuriously small estimated number of factors. We 

estimate the number of factors driving yields ( N = 109 ) 

and the remaining macroeconomic data ( N = 135 ) using 

Bai-Ng (2002) IC2, and in light of the analysis in Crump 

and Gospodinov (2022) consider the predictive ability for 

future yields as an additional criterion. 

Table 1 provides the Bai-Ng (2002) IC2 criterion for 

yields and macroeconomic variables for a given number 

of factors i , along with the trace R 2 that measures the 

fraction of total variance explained by the factors 1 to 

i , and the marginal trace R 2 of factor i . For the macroe- 

conomic dataset, the trace R 2 of the first factor is much 

smaller (about 0.15) and the contributions of higher-order 

factors decline slowly compared to the yield dataset. The 

Bai-Ng (2002) IC2 selects eight factors which capture 

more than 48% of the variation of all FRED-MD series. 

This estimate is consistent with McCracken and Ng (2016) , 

who also estimate eight factors for essentially the same 
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Table 1 

Statistics for estimating the number of factors. The trace R 2 values capture the fraction of total variation explained in the data by the row number of 

factors. The Bai-Ng (2002) IC2 criterion balances the benefit of adding an additional factor against the cost of increased sampling variability in static factor 

models. 

(a) Yield dataset ( N = 109 ) 

Number of static factors Trace R 2 Marginal trace R 2 Bai-Ng (2002) IC2 

1 0.99 0.99 -4.50 

2 1.00 0.01 -7.60 

3 1.00 0.00 -10.47 

4 1.00 0.00 -13.00 

5 1.00 0.00 -15.52 

(b) Macroeconomic dataset ( N = 135 ) 

Number of static factors Trace R 2 Marginal trace R 2 Bai-Ng (2002) IC2 

1 0.15 0.15 -0.12 

2 0.22 0.07 -0.16 

3 0.29 0.07 -0.21 

4 0.35 0.06 -0.25 

5 0.39 0.04 -0.27 

6 0.43 0.04 -0.28 

7 0.46 0.03 -0.29 

8 0.48 0.02 -0.29 

9 0.50 0.02 -0.29 

10 0.52 0.02 -0.28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 The estimated lag order greater than one in the only-yields model 

is consistent with recent evidence that yield dynamics may not be fully 

Markovian; see e.g. Cochrane and Piazzesi (2005) and Hanson et al. 

(2021) . 
set of variables and a slightly shorter sample. For the yield

dataset, the trace R 2 shows that the first factor explains

around 99% of the overall variance of yields in our sample,

in line with previous evidence. Despite this large share of

variance explained by the first principal component, the

Bai-Ng (2002) IC2 criterion selects five yield factors (the

maximum number of factors we consider). 

While the higher-order yield curve factors have tiny

marginal explanatory power for yield variances, they have

significant marginal predictive power for future individual

yields, as we show next. Specifically, we run the following

regressions of one-year yield changes on factor estimates,
ˆ F t : 

y (n ) 
t+12 

− y (n ) 
t = β0 + β ′ 

1 ̂
 F t + e t+12 , (10)

where e t+12 are innovations orthogonal to ˆ F t . Table 2 re-

ports the estimates of β1 , and the R̄ 2 for the two, five, and

ten-year Treasury, assuming different numbers of yield

curve factors. We compute Newey-West HAC standard er-

rors with 18 lags, following Cochrane and Piazzesi (2005) .

For all three maturities the fifth yield curve principal com-

ponent, ˆ F 5 t , has strongly significant marginal predictive

power for future yield changes. Including the fourth and

fifth yield curve principal components (columns 2, 5, and

8) markedly increases predictability with respect to the

first three principal components (columns 1, 4, 7), with the

R̄ 2 increasing from 5 to 9% for the two-year maturity, from

8 to 13% for the five-year maturity, and from 14 to 19% for

the ten-year maturity. Adding the eight additional macro

factors (columns 3, 6, 9) further raises predictability, with

R̄ 2 values increasing to 22–25%. This is consistent with e.g.

Moench (2008) and Ludvigson and Ng (2009) and suggests

that information embedded in these macro factors helps

to capture future yield variation. 

Informed by these results, we set the number of yield

factors to five in both specifications. This choice is con-

sistent with ACM, who use the same underlying Treasury
1021 
yield data but a different sam ple and test for the number 

of factors using a rank test of the factor loading matrix. An- 

other reason to include additional yield factors beyond the 

first three principal components is the “excess volatility” of 

asset prices relative to affine models. As Giglio and Kelly 

(2018) document, the volatility of very long-term Treasury 

yields exceeds that implied by a standard affine model 

with three factors. In unreported results, we find that a 

five-factor model for Treasuries does not exhibit excess 

volatility in our sample. Based on the BIC with 1 ≤ p ≤ 12 , 

we further set the lag order in the factor VARs to p = 2 . 2 

4. Results 

This section summarizes our results. We start by dis- 

cussing the properties of the three identified shocks to 

the yield curve in Section 4.1 . In Section 4.2 , we iden- 

tify innovations to realized and implied stock market 

volatility and document that these are strongly correlated 

with the yield news shock. Section 4.3 isolates shocks to 

contemporaneous volatility from those to expectations of 

future volatility. To shed further light on the link between 

yield news and leading economic indicators, we explicitly 

identify a business cycle news shock in Section 4.4 and 

study the variation of yield news unexplained by real- 

ized volatility and business cycle news in Section 4.5 . 

Section 4.6 performs several robustness analyzes. 

4.1. Yield curve shocks 

We start by documenting that the three yield curve 

shocks combined explain all yield curve variation. 
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Table 2 

OLS regressions of one-year change in Treasury yields on lagged factors. ˆ F Le v el 
1 , ˆ F Slope 

2 
, ˆ F Curv . 

3 , ˆ F Y 4 and ˆ F Y 5 denote the yield curve level, slope, curvature and 4th 

and 5th yield factors, all estimated by principal components using yields with maturities from 12 to 120 months. ˆ F Z 1 , 
ˆ F Z 2 ,..., 

ˆ F Z 8 denote eight macroeconomic 

factors estimated by first regressing 135 FRED-MD series on the five yield curve factors and then extracting principal components from the residuals. 

The numbers in parentheses are standard errors computed by Newey-West HAC with 18 lags. The factor estimates are normalized to have unit standard 

deviation. Coefficients that are statistically significant at the 10% level are highlighted in bold. A constant is always included in the regression even though 

its estimate is not reported in the table. 

Model: y (n ) 
t+12 

− y (n ) 
t = β0 + β ′ 

1 
ˆ F t + e t+12 

y (2) 
t+12 

− y (2) 
t y (5) 

t+12 
− y (5) 

t y (10) 
t+12 

− y (10) 
t 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

ˆ F Le v el 
t 

-0.32 -0.32 -0.31 -0.22 -0.22 -0.21 -0.14 -0.14 -0.14 

(0.19) (0.18) (0.16) (0.16) (0.15) (0.13) (0.14) (0.14) (0.12) 

ˆ F Slope 
t 

-0.07 -0.06 -0.06 -0.25 -0.25 -0.24 -0.36 -0.36 -0.35 

(0.14) (0.14) (0.14) (0.12) (0.12) (0.12) (0.10) (0.10) (0.10) 
ˆ F Curv . 
t 

0.00 0.00 0.01 0.14 0.14 0.14 0.12 0.13 0.13 

(0.15) (0.14) (0.13) (0.12) (0.12) (0.11) (0.10) (0.10) (0.10) 
ˆ F Y 4 t 

-0.04 -0.04 -0.05 -0.06 -0.09 -0.09 

(0.10) (0.08) (0.08) (0.07) (0.07) (0.06) 
ˆ F Y 5 t 

0.32 0.32 0.26 0.27 0.22 0.22 

(0.11) (0.12) (0.08) (0.09) (0.07) (0.08) 
ˆ F Z 1 t 

-0.34 -0.18 -0.09 

(0.12) (0.09) (0.08) 
ˆ F Z 2 t 

0.05 0.04 0.04 

(0.03) (0.02) (0.02) 
ˆ F Z 3 t 

0.27 0.19 0.14 

(0.09) (0.07) (0.05) 
ˆ F Z 4 t 

-0.25 -0.17 -0.11 

(0.09) (0.07) (0.07) 
ˆ F Z 5 t 

0.03 -0.03 -0.08 

(0.10) (0.08) (0.06) 
ˆ F Z 6 t 

0.13 0.13 0.13 

(0.06) (0.05) (0.04) 
ˆ F Z 7 t 

-0.03 -0.02 -0.03 

(0.04) (0.04) (0.03) 
ˆ F Z 8 t 

-0.10 -0.08 -0.07 

(0.06) (0.05) (0.04) 

R̄ 2 0.05 0.09 0.22 0.08 0.13 0.22 0.14 0.19 0.25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Note that these estimates are from two structural DFMs with a differ- 

ent number of factors (5 in the only-yields and 13 in the macro-yields 

model), and therefore one may view them as not being fully compa- 

rable. As an alternative, we have applied the Gorodnichenko and Lee 

(2020) R 2 method for consistent comparison of the contributions of the 

identified shocks from different model specifications. The results are es- 

sentially identical to those in Fig. 1 , and thus support the comparison of 
Fig. 1 (panel a) provides forecast error variance decompo-

sitions for the two-year (top row), five-year (middle row),

and ten-year Treasury yields (bottom row). The first three

columns provide the shares of FEV explained by the level,

slope and yield news shocks, and the last column provides

the sum of the shares explained by the three shocks. The

blue dashed lines show the estimates from the only-yields,

the black solid lines from the macro-yields model. In

both specifications, the level shock explains at least 90%

of the contemporaneous response of Treasury yields. The

contribution of this shock to the FEV declines to about 70%

at the three-year horizon in the only-yields model, and to

about 50% in the macro-yields model. A shock to the slope

factor explains considerably smaller shares of variance; it

is highest at about 15% of the variance on impact for the

two-year maturity, and slowly declines towards zero for

longer forecast horizons. The variance shares explained by

the slope shock are similarly low in both the only-yields

and the macro-yields specifications. 

The FEV contributions of the yield news shock, shown

in the third column, are strikingly different. As imposed

through its orthogonality with level and slope, the news

shock explains essentially none of the contemporane-

ous variation of yields. However, the longer the forecast

horizon the more prominent the role of the yield news

shock. At the three-year horizon, the shock explains about
1022 
30% of the yield curve variation in the only-yields and 

a staggering 50% in the macro-yields model. 3 Hence, a 

large share of the medium to longer-term variation in 

Treasury yields is driven by a shock that does not move 

yields contemporaneously. This finding strongly supports 

previous evidence for unspanned or hidden factors in 

the term structure of interest rates. The fact that the 

FEV contributions of the news shock are substantially 

larger in the macro-yields model further suggests that 

macroeconomic information that is not captured by yields 

contemporaneously explains future yield curve variation. 

Strikingly, the three shocks combined explain essen- 

tially all of the variation in Treasury yields for horizons 

as far as three years out. In other words, the dynamic 

rank of the Treasury yield curve is three. Hence, studying 

these three shocks we can disentangle the different driving 

forces of Treasury yields. The bottom panel of Fig. 1 shows 

that the level and slope shocks identified in the two 
estimates across our two different structural DFM specifications. 
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Fig. 1. FEVDs from only-yields and macro-yields DFMs. The top panel of this figure shows the FEVDs from the only-yields model (blue dashed ±1 standard 

error bands), and the macro-yields model (black solid ±1 standard error bands) for the level, slope and yield news shocks, as well as the three shocks 

combined. The bottom panel provides scatter plots of each shock estimated in the two model specifications. 

 

 

 

 

 

 

 

 

 

 

 

 

model specifications are almost perfectly correlated, while

the correlation between the yield news shocks across the

two models is about 60%. This reinforces the notion that

macroeconomic information is important for future yield

curve variation, over and above the information contained

in yields themselves. In the following, we therefore focus

on the shocks identified in the richer macro-yields model. 4

Yield response to yield curve shocks Our identification of

shocks driving Treasury yields follows statistical criteria.

We provide an economic interpretation of the shocks via

impulse response analysis. We show the impulse responses

of the two- and ten-year Treasury yields to the shocks
4 Note that we use final revised macroeconomic data in our analysis. 

Ghysels et al. (2018) show that the predictive content of macro variables 

for future bond returns is considerably higher when final revised instead 

of real-time data are considered. Moreover, macroeconomic data revisions 

are correlated with future bond yields. Some of the additional predic- 

tive content of news shocks in the macro-yields model might thus be 

attributed to embedded data revision components. 

1023 
in the first column of Fig. 2 . We scale all three shocks 

so that they each lead to the same peak decline of the 

two-year yield of about 25 basis points as implied by a 

one-standard-deviation impulse of the yield news shock. 

The level shock, shown in the top row, reduces both 

yields by about 23 and 17 basis points on impact. The 

responses are quite persistent with a half-life of about 

two years. The slope shock (middle row) implies initial 

responses of opposite sign for the two-year and the ten- 

year Treasury. While the two-year Treasury falls by about 

20 bps, the ten-year yield increases by a similar amount, 

thus resulting in a steepening of the yield curve by al- 

most 50 bps. Slope shocks are less persistent than level 

shocks, and die out after about 18 months. In contrast, the 

yield news shock (bottom row) does not move yields on 

impact, as per construction. However, yields drop sharply 

during the first few months after the shock hits, with the 

two-year yield declining by 25 bps and the ten-year yield 

by about 15 bps after one year. The responses are even 
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Fig. 2. IRFs and FEVDs of yields and their components to yield shocks. The top panel of this figure shows the IRFs for the level, slope and yield news 

shocks for yields and their expected short rate and term premium components for the two-year (black solid ±1 standard error bands) and the ten-year 

(blue dashed ±1 standard error bands) maturity from the macro-yields model. The yield news shock is reported as a one-standard deviation impulse, and 

the responses for level and slope shocks are scaled so that they each produce the same peak decline in the two-year yield as the yield news shock. The 

bottom panel displays the corresponding FEVDs. 

1024 
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more persistent than those of the level shock, and remain

substantially negative in the first three years. 

How can a shock that does not move yields contem-

poraneously have such a strong effect on future yields?

A common explanation in the literature on unspanned

factors in the term structure is that such factors have

an offsetting initial impact on the term premium and

expected short rate components of yields, but differential

impacts at longer horizons. We check if this is also the

case for the yield news shock by studying its impact on

both yield components which we obtain from ACM. 5 As

we use the same underlying yields in our analysis and

as the ACM model fits these yields close to perfectly,

the impulse responses of the expected short rate and

term premium components sum to the responses for the

corresponding yield itself. 

The top panel of Fig. 2 provides the impulse responses.

The first column shows the response of yields, the middle

that of expected short rates and the last column that of

term premiums. Focusing on the level shock first (top

row), we see that the bulk of the yield response to that

shock is driven by a sharp and persistent drop of expected

future short rates, accompanied by a quantitatively smaller

but also persistent decline in term premiums. The slope

shock (middle row) elicits an initial reduction of expected

future short rates of about 40 bps at the two-year maturity

and 20 bps at the ten-year maturity. The decline in ex-

pected short rates is relatively persistent, taking two years

to converge back to zero. Interestingly, the slope shock is

also followed by a persistent increase in term premiums,

which partly offsets the initial decline in expected short

rates. The responses to the yield news shock (bottom row)

show that expected future short rates drop by only a few

basis points initially, but then continue to decline sharply

over the next year or so, largely mimicking the shape and

magnitude of the yield responses. Term premiums initially

rise by the same amount as risk-neutral yields fall. As a

result, the on-impact response of yields – which equals

the sum of the two components – is essentially zero,

thus “hiding” the news shock in contemporaneous yields.

Notably, while the yield news shock initially drives up

term premiums by a few basis points, that response turns

negative after about two to three years, thus contributing

to the strong and persistent response of yields to the news

shock at longer horizons. 

The initial increase of the term premium is explained

by a decline in the price of level risk in response to the

yield news shock. As shown in ACM, variation in the

price of level risk is primarily driven by the fifth principal

component of Treasury yields, consistent with the strong

predictive power of this factor for future yield changes

that we have documented above. In unreported results, we
5 Daily updates of these components can be found on Bloomberg and 

Haver, and also here: https://www.newyorkfed.org/medialibrary/media/ 

research/data _ indicators/ACMTermPremium.xls . Here, we use the end-of- 

month observations. Also note that the structural DFM estimate of the 

impulse response functions contain two parts: the loadings ˆ �, and the 

moving average coefficients from the factor VAR, ˆ D (L ) ̂  Q . We estimate the 

loadings for the components by regressing them on the model factors, but 

do not include the components in the vector of variables from which we 

extract the factors. 
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confirm that this factor sharply declines in response to a 

positive yield news shock, pushing down the price of level 

risk. As in ACM, we ensure that yields of all maturities 

load positively on the level factor. Since bond returns are 

scaled negative yield changes, the betas on excess returns 

and thus term premiums are negative multiples of the 

yield loadings. Hence, a decline in the price of level risk 

raises the term premium. 

The bottom panel of Fig. 2 shows the FEV decom- 

positions for the yields and their two components. The 

charts highlight that yield variation at shorter horizons in 

response to the level shock (top row) is almost entirely 

driven by the response of expected future short rates and 

only to a small extent by term premiums. The opposite 

picture emerges for the slope shock (middle row). It 

explains about 20–30% of the variation of expected short 

rates on impact, and this fraction slowly declines with the 

forecast horizon. In contrast, the slope shock accounts for 

about 80% of the variation of the ten-year term premium 

on impact, which declines to a sizable 50% after three 

years. It is worth noting that since the expected short 

rate and term premium responses to the slope shock 

are of opposite signs, the sizable term premium variance 

shares explained by the slope shock do not translate into 

substantial yield variation. Turning to the bottom row, 

we see that essentially all of the yield variation induced 

by the news shock is driven by its highly persistent im- 

pact on expected future short rates. Only small fractions 

of term premium variation are explained by the news 

shock. At longer horizons, yield variation is accounted for 

by level and news shocks in similar magnitudes, and is 

mainly driven by the expected short rate component. To 

better understand the economics behind the three shocks 

driving Treasury yields, we next study their impact on key 

financial and macroeconomic variables. 

Financial market response to yield curve shocks The top 

panel of Fig. 3 provides impulse responses of the S&P500 

index, MOVE, VXO, RVol, and the EBP. For comparison, we 

again show the responses of the two-year Treasury yield. 

Focusing first on the S&P 500, we see that stock prices rise 

by about 70 bps and remain elevated in response to a level 

shock (blue line), and drop by about 40 bps before they 

revert back to zero in response to a slope shock (black 

line). The S&P 500 drops much more strongly, by about 2%, 

in reaction to the yield news shock (red line), and this re- 

sponse is very long-lasting. Notice that the sharp decline of 

stock prices on impact is in stark contrast to the zero con- 

temporaneous response of Treasury yields to a news shock. 

Looking at the responses of VXO, RVol, MOVE and EBP, 

the following picture emerges. Level shocks have essen- 

tially no impact on any of these indicators. Slope shocks 

elicit a sizable response of Treasury option implied volatil- 

ity, but only moderate responses of the other financial 

indicators. Again in sharp contrast, the yield news shock 

is associated with sharp and persistent increases of bond 

and stock market volatility. The VXO jumps by about 2.5% 

on impact, and only reverts back to its initial level after 

more than one year. This pattern is essentially mimicked 

by realized stock market volatility. The MOVE and the EBP 

all show similar responses. Hence, despite the fact that 

it is not apparent in Treasury yields initially, the yield 

https://www.newyorkfed.org/medialibrary/media/research/data_indicators/ACMTermPremium.xls
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Fig. 3. IRFs and FEVDs of financial market indicators to yield shocks. The top panel of this figure shows the IRFs for the level shock (blue solid ±1 standard 

error bands), the slope shock (black solid ±1 standard error bands), and the yield news shock (red solid ±1 standard error bands) from the macro-yields 

model. The yield news shock is reported as a one-standard-deviation impulse, and the responses for the level and slope shocks are scaled so that they 

each produce the same peak decline in the two-year yield as the yield news shock. The bottom panel displays the corresponding FEVDs. 
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news shock is associated with large spikes in volatility and

risk premium measures. This is also reflected in the FEV

decompositions provided in the bottom panel of Fig. 3 .

The yield news shock accounts for around 20–30% of the

forecast error variance of stock prices, financial volatility

indices and the excess bond premium across forecast

horizons. In contrast, the level and slope shocks explain

little if any of the variation of these key financial market

indicators. 

Macroeconomic response to yield curve shocks A vast

literature pioneered by Bloom (2009) has shown that

shocks to implied and realized financial market volatility

are important drivers of macroeconomic dynamics. Given

that our identified yield news shock is associated with a

sharp contemporaneous increase in realized and implied

volatility, we next investigate its effects on macroeconomic

aggregates. 

The top panel of Fig. 4 provides impulse responses

for key macro indicators to the three yield curve shocks.

They show that contemporaneous innovations of the yield

curve level have essentially no discernible effect on real

macroeconomic aggregates. That said, they are associated

with a small but persistent drop of CPI inflation and a

persistent but shallow decline in the federal funds rate

and in expected Treasury bill forecasts. The responses to

the slope shock are more sizable. Industrial production,

nonfarm payroll and personal consumption expenditures

all start to rise after a few months and remain elevated,

with industrial production increasing by about one percent

after three years. This economic expansion is mirrored by

a hump-shaped increase in the Philadelphia Fed leading

indicator and housing starts, as well as a persistent decline

of initial claims for unemployment insurance. The strong

growth is supported by accommodative monetary policy

as indicated by a lower federal funds rate and a lower

expected path of policy rates. 

The impulse responses associated with the yield news

shock paint a different picture. All measures of real eco-

nomic activity fall persistently. IP declines by a little less

than one percent after one year, nonfarm payrolls fall by

about half a percent, and personal consumption expendi-

tures by about 0.2%. While the initial response of these

measures of real activity is muted, the yield news shock

is associated with a sharp on-impact response of several

leading business cycle indicators, as shown in the second

row of Fig. 4 . The Philadelphia Fed leading indicator,

housing starts, and initial claims all display a strong and

persistent reaction when the yield news shock hits. Hence,

in addition to hightened financial market volatility a pos-

itive realization of the yield news shock is associated with

negative news about the state of the business cycle. The

strong response of leading indicators is accompanied by a

small but persistent drop in inflation. The Federal Reserve

accommodates the decline of inflation and real activity

by lowering the federal funds rate persistently. Profes-

sional forecasters understand this and also persistently

lower their expectations of the three-month Treasury bill

rate. 

The forecast error variance decompositions in the

bottom panel of Fig. 4 underscore these findings. The

contributions of the level and slope shocks to the variation
1027 
in key macroeconomic variables are small. The level shock 

only meaningfully contributes to the variation in the 

federal funds rate itself and expected future TBill yields. 

The slope shock explains some variation of real economic 

growth, especially at longer forecast horizons, consistent 

with a prior literature documenting predictive power of 

the term spread for economic conditions several quarters 

out. In sharp contrast, the yield news shock explains large 

fractions of the forecast error variance of macroeconomic 

aggregates at all but the shortest horizons. At the one-year 

horizon, the shock captures more than 40% of the variation 

of IP and a staggering 60% of the variation in nonfarm 

payrolls. 

The top panel of Fig. 5 provides a time series plot of the 

identified yield news shock series. While the shock appears 

somewhat heavy-tailed, it does not feature much skew- 

ness. To better visualize its cyclical properties, the bottom 

panel of the figure shows the shock run through an AR(1) 

filter with autoregressive coefficient of 0.9. This chart indi- 

cates that recessions are associated with strings of positive 

yield news, while negative realizations tend to cluster 

right after recessions. The filtered series is strongly nega- 

tively correlated with 12-month IP growth, confirming the 

counter-cyclical behavior of the yield news shock series. 

Combined with the impulse responses discussed above, 

this countercyclical pattern suggests that the yield news 

shock, which affects Treasury yields not contempora- 

neously but in the future, has properties akin to those 

documented for uncertainty shocks (e.g., Bloom, 2009; 

Basu and Bundick, 2017 ) and, more recently, shocks to 

realized stock market volatility as in Berger et al. (2020) . 

In the next section, we explicitly contrast the impulse 

responses to the yield news shock with those to identified 

shocks to implied and realized stock market volatility. 

4.2. Shocks to implied and realized stock market volatility 

We follow Caldara et al. (2016) who use a structural 

VAR to identify an uncertainty shock as an innovation 

that leads to the largest positive response in a measure 

of uncertainty over the first six months after the shock 

hits. We deviate from their approach in two ways. First, 

we achieve identification by maximizing the forecast error 

variance share of an uncertainty measure in the same 

way as we identify the yield news shock. In contrast, 

Caldara et al. (2016) use a penalty function approach 

which maximizes the impulse responses as opposed to 

the forecast error variance of the target variable. Second, 

we identify the shock within our structural macro-yields 

DFM as opposed to a structural VAR. This allows us to 

estimate responses for the same variables in an internally 

consistent way and enables comparison of the responses 

to the yield news and uncertainty shocks. As our baseline 

measure, we use the VXO to identify an implied volatility 

shock. For comparison, we also show the responses for 

two more shocks targeting the MOVE and the LMN indices 

in Figs. A.1 to A.3 in the Online Appendix. 

Measures of implied volatility from stock options 

are highly correlated with measures of realized stock 

market volatility. Berger et al. (2020) document that it 

is realizations of contemporaneous volatility rather than 
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Fig. 4. IRFs and FEVDs of macroeconomic variables to yield shocks. The top panel of this figure shows the IRFs for the level shock (blue solid ±1 standard 

error bands), the slope shock (black solid ±1 standard error bands), and the yield news shock (red solid ±1 standard error bands) from the macro-yields 

model. The yield news shock is reported as a one-standard-deviation impulse, and the responses for the level and slope shocks are scaled so that they 

each produce the same peak decline in the two-year yield as the yield news shock. The bottom panel displays the corresponding FEVDs. 
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Fig. 5. Time series of estimated yield news shock. The top panel of this figure shows the estimated yield news shock, along with the skewness and 

kurtosis. The Kelley skewness is computed as the difference between the 90th-to-50th percentiles differential and the 50th-to-10th percentiles differential 

divided by the 90th-to-10th percentiles differential. The bottom panel displays the exponentially weighted moving average of the estimated yield news 

shock based on an AR(1) coefficient ρ = 0 . 9 . Correlation is computed with 12-month IP growth. Standard errors are constructed by bootstrap resampling 

with 500 replications. 

 

 

 

 

 

 

independent anticipations of future volatility that are

associated with sharp and protracted declines of real

economic activity. In light of this finding, we identify a

shock to realized stock market volatility as the innovation

which maximizes the one-month ahead FEV share of

realized volatility. We choose this horizon to separate
1029 
contemporaneous innovations to volatility from those to 

expectations of future volatility. 

Financial market response to realized and implied volatil- 

ity shocks The top panel of Fig. 6 provides the responses 

of the financial market indicators to the implied volatility 

(purple solid line) and realized volatility (blue dashed line) 



E. Moench and S. Soofi-Siavash Journal of Financial Economics 146 (2022) 1016–1043 

Fig. 6. IRFs and FEVDs of financial market indicators to realized and implied volatility shocks. The top panel shows the IRFs for the yield news shock (red 

dotted), the shock to realized volatility (blue dashed ±1 stand error bands), and the shock to implied volatility (purple solid ±1 stand error bands) from the 

macro-yields model. The yield news shock is reported as a one-standard-deviation impulse, and the responses for the realized and implied volatility shocks 

are scaled so that they each produce the same peak decline in the two-year yield as the yield news shock. The bottom panel displays the corresponding 

FEVDs. 
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7 We achieve identification of the two shocks sequentially. The realized 

volatility shock ( Q 1 ) is identified by maximizing the share of the forecast 

error variance of RVol over the next month. Then, given Q 1 , we identify 
shocks. For comparison, we superimpose the responses for

the yield news shock. 6 The impulse responses to all three

innovations are strikingly similar. They are essentially in-

distinguishable for the two-year Treasury yield, the MOVE,

VXO and the RVol index. The responses of the S&P500 are

also similar, the most important difference being that the

implied and realized volatility shocks elicit a somewhat

stronger stock market reaction than the yield news shock.

The corresponding FEVDs shown in the bottom panel

of Fig. 6 confirm these findings: yield news and shocks

to implied and realized stock market volatility explain

similarly large proportions of the variation in key financial

indicators. 

Yield response to realized and implied volatility shocks We

next compare the responses of Treasury yields and their

components to the three shocks. The top panel of Fig. 7

shows that while Treasury yields only feature a muted

response to the shocks on impact, they drop sharply in

subsequent months and persistently remain below their

initial level thereafter. The impulse responses to the im-

plied and realized volatility shocks essentially mimic those

of the yield news shock which are again superimposed.

As for the yield news shock, the strong delayed response

of yields is primarily driven by their expected short rate

component. In contrast, the term premium component

rises somewhat initially, and then slowly declines over

subsequent years. That said, the volatility shocks are

associated with a somewhat stronger response of term

premiums. The share of yield variance explained by the

volatility shocks is slightly lower than for the yield news

shock, as shown in the bottom panel of Fig. 7 . 

Importantly, the resulting responses of Treasury yields

are consistent with the theoretical predictions of Bianchi

et al. (2019) and Amisano and Tristani (2019) . In both

models, volatility follows a regime-switching process.

Hence, a surprise increase of volatility tends to lead to

persistently higher volatility and thus increased economic

uncertainty. The higher uncertainty pushes up the term

premium and via precautionary motives leads to lower

expected short rates. 

Macroeconomic response to realized and implied volatility

shocks Fig. 8 provides the responses of our set of key macro

variables to the two volatility shocks. Not surprisingly, they

again closely resemble those obtained for the yield news

shock. Industrial production, nonfarm payroll employment,

and personal consumption expenditures all decline signifi-

cantly with some delay. Leading indicators respond sharply

on impact and remain elevated for one to two years. In-

flation drops only slightly but persistently. The Federal

Reserve responds by lowering the federal funds rate. After

a few months, professional forecasters incorporate this

policy response into their projections for short-term rates.

The quantitative importance of the shocks for macroe-

conomic dynamics is highlighted in the forecast error

variance decompositions in the bottom panel of Fig. 8 .

Similar to the yield news shock, the innovations to implied
6 Consistent with the previous section, we rescale the responses to the 

realized and implied volatility shocks so that they each generate the same 

peak decline of the two-year yield as a one-standard-deviation yield news 

shock. 
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and realized stock market volatility explain about 50% of 

the variation in nonfarm payrolls at horizons from about 

one to three years. Around 30% of the federal funds rate 

variation at the three-year horizon is captured by the 

two volatility shocks, a highly significant but somewhat 

smaller share than that captured by the yield news shock. 

These results underscore the close similarity in impulse 

responses of yields, their components, and macroeconomic 

aggregates to the shocks to realized and implied stock 

market volatility and the yield news shock. In the next 

section, we disentangle innovations to contemporaneous 

and expected volatility and contrast them to the yield 

news shock. 

4.3. Uncertainty about the future or realization of current 

volatility? 

So far, we have shown that the responses to the yield 

news shock and shocks to implied and realized stock mar- 

ket volatility are similar. Following the analysis of Berger 

et al. (2020) , we next seek to tease out the incremental 

contributions of innovations to realized and implied stock 

market volatility to the observed responses of financial 

and macroeconomic variables. We do so by separately 

identifying the two shocks in the macro-yields DFM: a re- 

alized volatility shock as before; and an uncertainty shock 

identified as the innovation that explains the highest share 

of the forecast error variance in the VXO over the next six 

months, but is orthogonal to the realized volatility shock. 

Hence, the uncertainty shock is purged from having any 

impact on the realization of current volatility. 7 

Fig. A.4 in the Online Appendix provides the results. 

The dashed blue and purple lines show the impulse re- 

sponses for the independently identified shocks to realized 

and implied stock market volatility as already shown in 

the previous figures. The brown solid lines and associated 

bands show the response of the identified uncertainty 

shock. Looking first at the responses of the two-year yield 

and other financial market indicators in the top panel, we 

see a much more muted and somewhat short-lived re- 

sponse to the uncertainty shock compared to the realized 

volatility shock. This is also reflected in the considerably 

smaller variance shares explained by the uncertainty shock 

for all financial market indicators, as shown in the bottom 

panel. 

Fig. A.5 in the Online Appendix provides the corre- 

sponding results for yields and their components. While 

the realized volatility shock leads to the previously dis- 

cussed persistent and delayed decline of expected short 

rates and yields, the uncertainty component of implied 

volatility induces very different responses. Short rate ex- 
the uncertainty shock ( Q 2 ) by maximizing the share of forecast error vari- 

ance of the VXO over the next six months, subject to Q ′ 2 Q 1 = 0 . As before, 

the responses for realized and implied volatility shocks are scaled so that 

they each produce the same peak decline in the two-year yield as a one- 

standard-deviation yield news shock. The uncertainty shock is scaled so 

that it has the same cumulative effect on the VXO over the next 2–60 

months as the implied volatility shock. 
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Fig. 7. IRFs and FEVDs of yields and their components to realized and implied volatility shocks. The top panel shows the IRFs for the yield news shock (red 

dotted), the shock to realized volatility (blue dashed ±1 stand error bands), and the shock to implied volatility (purple solid ±1 stand error bands) from the 

macro-yields model. The yield news shock is reported as a one-standard-deviation impulse, and the responses for the realized and implied volatility shocks 

are scaled so that they each produce the same peak decline in the two-year yield as the yield news shock. The bottom panel displays the corresponding 

FEVDs. 
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Fig. 8. IRFs and FEVDs of macroeconomic variables to realized and implied volatility shocks. The top panel shows the IRFs for the yield news shock (red 

dotted), the shock to realized volatility (blue dashed ±1 stand error bands), and the shock to implied volatility (purple solid ±1 stand error bands) from the 

macro-yields model. The yield news shock is reported as a one-standard-deviation impulse, and the responses for the realized and implied volatility shocks 

are scaled so that they each produce the same peak decline in the two-year yield as the yield news shock. The bottom panel displays the corresponding 

FEVDs. 
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pectations show a relatively mild and short-lived increase

followed by a subsequent decline while term premiums

persistently rise. These impulse responses are mirrored by

FEV decompositions which underscore that it is the real-

ization of stock market volatility rather than uncertainty

about the future that primarily drives the observed yield

curve response to increased stock market volatility. 

In sum, the results in this section show that the strik-

ing similarity of the yield news shock and innovations

to stock market volatility documented in the previous

section is primarily driven by realized volatility and not by

independent expectations of future volatility. Heightened

realized stock market volatility is associated with a short-

lived increase in term premiums and a persistent decrease

in short rate expectations which leads to a protracted

compression of yields. 

4.4. News about the business cycle 

We have seen in Section 4.1 that the yield news shock

is also associated with a sharp contemporaneous response

of leading indicators of the business cycle. This suggests

that in addition to realized volatility, the effects of the

yield news shock could also reflect responses to broader

news about the business cycle. To shed light on this poten-

tial interpretation, we identify a business cycle news shock

as the innovation that jointly maximizes the FEV shares

of a set of standard leading business cycle indicators: the

Philadelphia Fed leading index for the U.S. economy, initial

claims for unemployment insurance, and housing starts.

We set the horizon to one year ahead, a choice consis-

tent with Angeletos et al. (2020) who argue that a shock

identified this way dominates the variation of target vari-

ables (leading indicators in our case) over business cycle

frequencies . As before, we scale the business cycle news

shock so that it leads to the same peak decline of the two-

year yield as a one-standard-deviation yield news shock. 

Figs. 9 to 11 provide the results. The impulse responses

and FEV decompositions of the business cycle news

shock with associated error bands are shown in green,

the corresponding objects for the yield news shock are

superimposed as red dotted lines. Focusing first on the

yields and their components in the top panel of Fig. 9 ,

we observe a striking similarity between the two news

shocks. Both lead to persistently lower yields, primarily

driven by a compression of expected short rates. Moreover,

both news shocks are contemporaneously hidden in yields

as expected rates and term premiums feature offsetting

initial responses. Although the impulse responses for the

two shocks are similar, the bottom panel of Fig. 9 indicates

that business cycle news explain only about half of the

variation of yields compared to the yield news shock.

That said, Fig. 10 shows that the responses of the other

financial indicators to the two news shocks are also highly

similar. The impulse responses of macro aggregates and

leading indicators, provided in Fig. 11 , show qualitatively

similar but quantitatively more pronounced responses to

the business cycle news shock. The exception is the fed

funds rate and survey forecasts of the TBill rate. 

These results highlight that the yield news shock is

associated with macroeconomic and financial market
1034 
responses that are similar to those implied by a business 

cycle news shock. While the yield news shock explains a 

larger share of variation of future yields, the business cycle 

news shock accounts for larger fractions of macroeconomic 

aggregates. In light of this finding and the observation that 

shocks to realized volatility also feature similar responses, 

a natural question is to what extent the three shocks –

yield news, realized volatility, and business cycle news –

are correlated. Table 3 provides the correlation coefficients 

between the different shocks identified in the previous 

sections. As shown in the third column of the table, the 

yield news shock is similarly strongly correlated with the 

realized volatility and business cycle news shocks. Both 

correlation coefficients are around 75%. 

Fig. 12 provides plots of the realized volatility and busi- 

ness cycle news shocks, run through an AR(1) filter with 

autocorrelation coefficient of 0.9. In both charts, we super- 

impose the filtered yield news shock. The charts visualize 

the similarities between the three shock series, but they 

also show that they behave quite differently in certain 

periods. For example, around the double-dip recession of 

the early 1980s the yield news shock featured a sequence 

of negative realizations, indicating a sharp rise of expected 

short rates that was not associated with heightened stock 

market volatility or particularly positive news about the 

U.S. economy at the time. Instead, this likely reflected ex- 

pectations of a series of rate hikes by the newly appointed 

Federal Reserve chairman Volcker which were hidden in 

yields as term premiums decreased concurrently. 

The charts also document that the realized volatility 

and business cycle news shocks share similar time se- 

ries dynamics. Table 3 confirms that they are about 60% 

correlated. In unreported results, we find that the shock 

to realized volatility and the business cycle news shock 

generate very different responses of the financial market 

and macroeconomic variables once they have been orthog- 

onalized to one another. A realized volatility shock purged 

of business cycle news explains essentially none of the 

variation in leading indicators and real activity variables. 

A business cycle news shock purged of realized volatility, 

in turn, accounts for only a small share of the variation in 

stock and bond market volatility measures. Hence, while 

the two shocks capture partially overlapping information, 

they represent different sources of variability of economic 

and financial indicators. A regression shows that only 70% 

of the variation of the yield news shock is captured by the 

realized volatility and business cycle news shocks. This 

begs the question what captures the residual variation of 

the yield news shock. 

4.5. Residual variation in yield news 

To answer this question, we identify a yield news shock 

that is by construction orthogonal to the realized volatility 

and business cycle news shocks. Specifically, we include 

two additional orthogonality constraints in the optimiza- 

tion problem in Eq. (9) . The resulting shock is thus the 

innovation which maximizes future yield variation and is 

orthogonal to shocks to level, slope, realized stock market 

volatility and business cycle news. Figs. A.6 and A.7 in 

the Online Appendix compare the impulse responses and 
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Fig. 9. IRFs and FEVDs of yields and their components to business cycle news shock. The top panel of this figure shows the IRFs for the yield news shock 

(red dotted), and the business cycle news shock (green solid ±1 stand error bands) from the macro-yields model. The yield news shock is reported as a 

one-standard-deviation impulse, and the responses for the business cycle news shock are scaled so that the shock produces the same peak decline in the 

two-year yield as the yield news shock. The bottom panel displays the corresponding FEVDs. 
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Fig. 10. IRFs and FEVDs of financial market indicators to business cycle news shock. The top panel of this figure shows the IRFs for the yield news shock 

(red dotted), and the business cycle news shock (green solid ±1 stand error bands) from the macro-yields model. The yield news shock is reported as a 

one-standard-deviation impulse, and the responses for the business cycle news shock are scaled so that the shock produces the same peak decline in the 

two-year yield as the yield news shock. The bottom panel displays the corresponding FEVDs. 
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Fig. 11. IRFs and FEVDs of key macroeconomic indicators to business cycle news shock. The top panel of this figure shows the IRFs for the yield news 

shock (red dotted), and the business cycle news shock (green solid ±1 stand error bands) from the macro-yields model. The yield news shock is reported 

as a one-standard-deviation impulse, and the responses for the business cycle news shock are scaled so that the shock produces the same peak decline in 

the two-year yield as the yield news shock. The bottom panel displays the corresponding FEVDs. 
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Table 3 

Correlations among estimated shocks. Entries are correlations between individually identified shocks, which are computed over the full sample 1962M7–

2019M6. 

L S Y VXO RVol BC U YP 

Level Shock (L) 1.00 

Slope Shock (S) 0.00 1.00 

Yield News Shock (Y) 0.00 0.00 1.00 

Implied Volatility Shock (VXO) 0.03 0.10 0.74 1.00 

Realized Volatility Shock (RVol) 0.11 0.11 0.71 0.92 1.00 

Business Cycle News Shock (BC) -0.08 -0.22 0.76 0.72 0.57 1.00 

Uncertainty Shock (U) -0.23 -0.04 0.24 0.38 0.00 0.57 1.00 

Yield News Shock Purged of 0.00 0.00 0.54 -0.09 0.00 0.00 -0.20 1.00 

Realized Volatility & BC News (YP) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FEV decompositions of the original with those of the

orthogonalized yield news shock. The picture emerging

is that much of the financial market and macroeconomic

response to the yield news shock is indeed subsumed

by the other two shocks. The orthogonalized shock is

associated with few significant responses and explains

little to no variation in most of the considered variables.

A crucial exception are Treasury yields, however, of which

a significant share is captured by the orthogonalized yield

news shock, especially at longer maturities and horizons. 

Previous work has documented a strong comovement

of global sovereign bond yields (see, e.g., Diebold et al.,

2008; Adrian et al., 2018 ). Hence, innovations driving joint

variation in international bond markets represent a candi-

date source of residual Treasury yield variation embedded

in the yield news shock that is not captured by realized

stock market volatility and U.S. business cycle news. To

verify this conjecture, we study the impulse responses of

yields and their components to the orthogonalized yield

news shock for three major economies: Japan, Germany,

and the U.K. We obtain the yield curve decompositions

into expected short rate paths and term premiums from

Adrian et al. (2018) who apply a four-factor version of the

model in Adrian et al. (2013) to the zero coupon yield

curves denominated in the respective home currency. 

The impulse responses for the ten-year yield and its

components are provided in the top panel of Fig. 13 . The

red solid line and associated bands again capture the

responses to the yield news shock, the dashed yellow

lines show those of the orthogonalized yield news shock.

The first column shows the ten-year U.S. Treasury yield

for reference. The second to fourth columns display the

ten-year yields for Germany, the U.K. and Japan, respec-

tively. They document that international bond yields

respond very similarly to the U.S. yield news shock. The

initial response is muted, but yields in all four economies

sharply decline after a few months. While this decline is

primarily driven by a compression of expected short rates

in the U.S., in the other three countries term premiums

also account for some of the yield decline. The bottom

panel of the figure provides the associated forecast error

variance decompositions. They show that the yield news

shock purged from realized volatility and U.S. business

cycle news explains about as much of the variation of

international sovereign yields and their components as

the unorthogonalized yield news shock. This suggests that
news related to international bond markets account for 
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the residual variation of Treasury yields embedded in the 

yield news shock. 

4.6. Robustness 

In this section, we document that our results are robust 

along several dimensions. First, we show that our yield 

news shock implies very different responses of macroeco- 

nomic and financial variables and explains a substantially 

larger fraction of Treasury yield variation than the yield 

curve slope shock identified in Kurmann and Otrok (2013) . 

Second, in light of the difficulty in identifying the true 

factor space in bond yields documented by Crump and 

Gospodinov (2022) , we show that the yield curve shocks 

that we identify from yield factors are essentially identical 

to a similar set of shocks identified from a VAR in indi- 

vidual yields. Finally, we expand this VAR to also include 

a small number of macroeconomic and financial market 

volatility variables and further estimate a macro-yields 

FAVAR using the VXO and realized stock market volatility 

as observed factors. 

4.6.1. Comparison to a Kurmann and Otrok (2013) type slope 

shock 

Thus far, we have shown that the yield news shock 

which explains a maximum share of future yield variation 

while being orthogonal to level and slope contempora- 

neously is highly correlated with identified shocks to 

financial market volatility and business cycle news. In 

a related paper, Kurmann and Otrok (2013 , henceforth 

KO) identify a shock which maximizes the forecast error 

variance of the yield curve slope in a small-scale structural 

VAR. They show that this shock is strongly correlated with 

a TFP news shock, leading to a delayed but persistent 

increase of productivity and real output. 

Since the yield news shock we identify maximizes 

the forecast error variance of level and slope, a natural 

question is whether it partly captures the information 

embedded in the Kurmann-Otrok slope shock. To compare 

the two shocks, we use a macro-yields DFM estimated 

at the quarterly frequency. All macroeconomic series are 

from the FRED-QD series, compiled by McCracken and Ng 

(2020) and essentially represents a quarterly version of 

the monthly dataset used in the previous sections. We add 

TFP growth adjusted for variations in factor utilization as 

updated by Fernald (2014) , which is also used by KO. The 

model is estimated for the sample period 1962Q3-2019Q2. 
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Fig. 12. Exponentially weighted moving average of estimated realized volatility and business cycle news shocks. The top panel of this figure shows the 

exponentially weighted moving average of the estimated yield news shock based on an AR(1) coefficient ρ = 0 . 9 . The bottom panel displays that of the 

estimated business cycle news shock. Correlations are computed with 12-month IP growth. 

 

 

 

 

The quarterly dataset is described in detail in the Online

Appendix. 

To make the quarterly DFM comparable to the monthly

model used in the previous sections, we use the same

number of five yield and eight macroeconomic factors. We
1039 
identify the level, slope and yield news shocks exactly as 

before. We follow KO and identify a slope shock as a shock 

that explains a maximum share of forecast error variance 

of the spread between the five-year Treasury yield and the 

federal funds rate over a period of four quarters, the same 
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Fig. 13. IRFs and FEVDs of ten-year yield and components for the US, Germany, the UK and Japan to purged yield news shock. The top panel of this figure 

shows the IRFs for the yield news shock (red solid ±1 stand error bands), and the yield news shock that is made orthogonal to the realized volatility and 

BC news shocks (blue dashed ±1 stand error bands) from the macro-yields model. Each shock is reported as a one-standard-deviation impulse. 
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9 As the Philadelphia Fed leading indicator is not available before 

1982, the missing observations are calculated using the expectation–

maximization (EM) algorithm given in Stock and Watson (2002b) . The al- 
horizon we used to identify the yield news shock. 8 Both

identification schemes are implemented in this quarterly

model based on a factor VAR with one lag, selected by BIC

with 1 ≤ p ≤ 12 . 

The upper panel of Fig. A.8 in the Online Appendix pro-

vides the impulse responses for the KO slope shock in

comparison to the level, slope and yield news shocks.

They show that it implies impulse responses that are

quantitatively and qualitatively similar to the contempora-

neous slope shock we identify. The only exception is the

response of TFP growth, which is considerably larger and

more persistent for the KO slope shock. It is also worth

noting that the KO slope shock essentially leaves financial

market volatility unaffected, in sharp contrast to the yield

news shock. 

While the two shocks explain similar magnitudes of

macro variation, the yield news shock is substantially

more important for yield variation. The KO slope shock

explains only about 20% of the variation in the two-year

Treasury at shorter horizons while the yield news shock

captures about 50% and, combined with the level shock,

essentially all of the variation of yields at longer horizons.

To summarize, these results show that our shock iden-

tification is very different from the one in Kurmann and

Otrok (2013) and provides complementary insights into

which shocks move Treasury yields and what economic

interpretation these shocks have. 

4.6.2. Comparison with an only-yields structural VAR 

Our identification relies on the assumption that the

yield news shock can be expressed as a linear combi-

nation of the innovations to a small number of factors,

estimated by principal components. This identification

thus requires that principal components accurately capture

the true factor structure of yields. As discussed by Crump

and Gospodinov (2022) , this may be problematic for two

reasons. First, estimates of the number of factors could be

overstated because yields are highly persistent time se-

ries. Second, the fact that yields represent cross-sectional

averages of one-period forward rates could lead to a

spuriously small estimated number of factors. We address

these concerns by identifying the yield news shock in a

structural VAR which includes five variables: four Treasury

yields with maturities 2, 5, 7 and 10 years, and the spread

between the 10 and 1-year yields. The structural VAR

identification is described in detail in Appendix A.2. 

Following Stock and Watson (2016) we show that the

canonical correlations between the reduced-form VAR in-

novations and the innovations of the DFM all exceed 0.98.

Hence, essentially no information embedded in yields

is lost in the factor innovations. We also compute the

canonical correlations between the level, slope and yield

news shocks identified from the only-yields model with

the three shocks from the structural VAR. All are above

0.97, again suggesting that our use of yield principal com-

ponents does not result in a loss of information relative

to a model where yields are used directly. Fig. A.9 in the
8 Note that KO maximize the FEV of the yield spread over a period of 

ten years instead. The results are almost unchanged with respect to the 

identification using a horizon of four quarters. 
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Online Appendix shows that the yield responses obtained 

from the structural VAR with five variables strongly mimic 

those for the level, slope and yield news shocks identified 

from the only-yields DFM. Hence, the difficulties in identi- 

fying the true factor structure of bond yields documented 

in Crump and Gospodinov (2022) do not impinge on the 

identification of structural shocks from yield curve factors 

instead of individual yields. 

4.6.3. Comparison with an alternative structural VAR and 

FAVAR 

In our baseline macro-yields DFM, the different shocks 

are identified as the linear combinations of factor inno- 

vations that maximize the forecast error variations of 

the component of the target variables that is spanned by 

the model factors. According to Table A.1 in the Online 

Appendix, yields are fully spanned by the five yield prin- 

cipal components, but only about half of the variation of 

RVol, four-fifths of that of the Philadelphia Fed leading 

indicator, and one-third of the variation of initial claims 

are explained by their common components. As the differ- 

ent identification approaches maximize the forecast error 

variation of only the common component in our baseline 

DFM, one may therefore be concerned that not considering 

idiosyncratic variation in these target variables may bias 

our results. 

In this section, we identify realized volatility, business 

cycle news and yield news shocks in two alternative 

model specifications that target these variables directly. 

The first expands the five-yield structural VAR of the 

previous section to include eight additional financial and 

macroeconomic variables. These are the two stock market 

volatility indexes VXO and RVol, the Philadelphia Fed lead- 

ing indicator, initial claims, housing starts, as well as IP, 

nonfarm payroll, and CPI inflation. The second alternative 

model is a FAVAR in which the VXO and RVol are treated 

as observed factors. In this specification, we also include 

the five Treasury yield factors and six additional macro 

factors, where the latter are estimated by computing the 

principal components of the residuals obtained from re- 

gressing all FRED-MD series on the five yield curve factors, 

the VXO and RVol. Because the macro-yields DFM contains 

13 factors, we specify the two alternative models to have 

the same number of variables. We then compare the IRFs 

of our baseline DFM with their counterparts obtained from 

the two alternative model specifications. All models are 

estimated for the period 1962M7 to 2019M6. 9 

Fig. A.10 in the Online Appendix provides the IRFs for 

the yield news, realized volatility and business cycle news 

shocks from the DFM in comparison to the structural VAR 

and FAVAR specifications, where again the responses are 

scaled so that they each produce the same peak decline 

in the two-year yield. The main result of the figure is that 
gorithm iteratively computes the principal components from a large num- 

ber of series (the FRED-MD dataset in our case) and updates missing ob- 

servations using these factors. Over the post-1982 sample the Philadel- 

phia Fed leading indicator has an R 2 of 0.84 as reported in Table A.1, and 

this changes to 0.91 for the full period. 
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the IRFs are robust to the two alternative model specifica-

tions. Hence, targeting the volatility and leading indicator

variables directly rather than their common component

does not alter our results. 

5. Conclusion 

In this paper, we jointly characterize the dynamics of

a large number of macroeconomic variables and Treasury

yields in a dynamic factor model. We find that three

shocks explain essentially all of the variation of yields:

two shocks that contemporaneously move the level and

the slope of the yield curve and, importantly, a yield news

shock that does not move yields initially, but captures

about half of their variation at forecast horizons several

years out. The impact of the news shock remains hidden

in contemporaneous yields since it initially shifts their

expected future short rate and term premium components

in opposite directions. At the same time, the shock is

associated with sharp and persistent increases in realized

and implied stock and bond market volatility, a drop of

stock prices, and sharp reactions of leading business cycle

indicators that are followed by a protracted decline of real

activity. These responses trigger an easing of monetary

policy that is well understood by market participants who

significantly lower their future short rate expectations,

which in turn compresses yields. 

We show that the yield news shock embeds several

macroeconomic driving forces. First, innovations to re-

alized stock market volatility which also lead to briefly

higher term premiums and persistently lower expected

short rates. Second, negative news about the U.S. business

cycle also lead to a protracted decline of short rate expec-

tations and have a sizable impact on yields in the medium

run. Finally, news about international bond yields also ex-

plain significant shares of Treasury yield variation, but do

not carry predictive information about U.S. macroeconomic

dynamics beyond that contained in realized volatility and

U.S. business cycle news. 

Supplementary Material 

Supplementary material associated with this

article can be found, in the online version, at

doi: 10.1016/j.jfineco.2022.04.001 . 
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