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1 Introduction

Climate change induced by anthropogenic emissions of carbon dioxide (CO2) and other green-
house gases is considered as one of the most important threats to economic prosperity and
well-being worldwide. Only a rapid reduction of carbon emissions can limit the increase of
global mean temperatures to two degrees Celsius above pre-industrial levels (e.g. Masson-
Delmotte et al. 2018). To ensure that this development does not come at the cost of sharply
lower real activity, the carbon intensity of output has to decline substantially. This will require
fast technological progress aimed at reducing the use of fossil fuels in economic activities. Un-
derstanding the implications of this technological transition for economic growth and the path
of emissions is of first-order importance.

In this paper, we study the effects of energy-saving technological innovations on emissions
and the macroeconomy. We first derive identifying restrictions from frontier models of directed
technical change by Hassler et al. (2021, 2022) and Casey (2023). We then use these restric-
tions to identify an energy-saving technology shock in a structural vector autoregressive (VAR)
model of the U.S. economy. Specifically, we recover two innovations that jointly explain the
bulk of low frequency variation in total factor productivity (TFP) and energy intensity. We then
restrict these innovations to satisfy sign restrictions implied by the model. The energy-saving
technology (EST) shock raises TFP and is required to lower the energy intensity of output as
well as the income share of energy in the short to medium run. We contrast this shock with an
orthogonal technology shock which is required to raise TFP and the energy income share. We
label this a non-energy-saving technology (NEST) shock. Methodologically, our identification
builds on Angeletos, Collard and Dellas (2020) who extend the max-share approach of Uhlig
(2003) to the frequency domain.

We find that the EST shock is associated with a persistent reduction of the fossil fuel inten-
sity of U.S. output, defined as fossil fuel consumption relative to GDP. Importantly, however,
fossil fuel consumption only declines temporarily and then quickly reverts. This rebound is
driven by real output which responds little on impact, but then increases strongly and remains
elevated, leading to additional energy consumption. Hence, we document a Jevons paradox

in aggregate U.S. data: a technology shock which persistently lowers the energy intensity of
output is associated with a temporary increase of fossil fuel consumption.

The response to a NEST shock is very different. It is associated with an immediate hump-
shaped increase of fossil fuel consumption which dissipates after around five years. This is
driven by temporarily higher real output as well as TFP. Accordingly, we find that the NEST
shock explains larger fractions of TFP and output at short and intermediate horizons, while the
EST shock is a much more important driver of TFP and output at longer horizons. Importantly,
while Hassler et al. (2021) and others document that fossil fuel price increases have historically
led to increased energy-saving innovation, we show that our fossil energy-saving technology
shock is not contaminated by energy price shocks. Orthogonalizing with respect to a shock
that explains the bulk of business cycle variation in real energy prices delivers the same results.
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Moreover, while our baseline analysis relies on the intensity of fossil energy and its income
share as target variables, our results are essentially unchanged when we use a broader measure
of energy which additionally includes renewable and nuclear energy and excludes electrical
system energy losses.

We corroborate the identified EST shock as capturing innovations which lead to a more
efficient use of energy in two ways. First, we show that the shock series correlates strongly
with observable measures of energy-related innovations based on triadic patent data as well
as government research, development and demonstration (RD&D) in energy-related technolo-
gies. Second, we estimate an alternative structural VAR which directly includes indicators
of input-saving technologies. These are backed out from a constant elasticity of substitution
(CES) function in a capital/labor composite and fossil energy following Hassler et al. (2021).
We replace TFP and fossil energy intensity with the two input-saving technology series and
achieve identification by maximizing their long-run variation and applying sign restrictions.
This alternative identification yields impulse responses and variance contributions for the EST
and NEST shocks which closely mimic those obtained in our baseline analysis.

We shed further light on our finding of a rebound effect in fossil fuel consumption following
an EST shock by asking two questions. First, what role do changes in the energy mix of the
U.S. economy play in explaining this rebound? Second, what did the rebound imply for carbon
emissions? To answer these questions, we decompose the carbon emission intensity for the
aggregate U.S. economy into the emission intensity of fossil fuel consumption, fossil fuels
embodied in electricity relative to those directly consumed by end-use sectors, and the fossil
fuel end-use intensity of output. We show that while the U.S. economy has reduced its reliance
on direct fossil fuels over the past several decades, it has increasingly used them in electricity
production. Moreover, while the emission intensity of fossil fuel use was fairly stable over
most of our 1973-2019 sample, it has substantially declined in recent years, consistent with
the shale gas boom. Not surprisingly, the responses of emission intensity and its components
to the EST shock closely match those of the fossil fuel intensity. The decomposition further
shows that the EST shock is followed by a persistent increase of fossil fuel consumption in
electricity production. Our results thus highlight that energy-saving technological innovations
have primarily led to a substitution away from direct fossil fuel end-use to an indirect use in the
generation of electricity.

We complement our baseline findings based on aggregate U.S. data with a sectoral analysis.
Specifically, we decompose emissions per capita in each of the four end-use sectors “indus-
trial”, “residential”, “commercial”, and “transportation” into three components: the emissions
associated with total fossil fuel use in the respective sector, the fossil fuel embodied in elec-
tricity used by the sector, and the sector’s direct fossil fuel consumption per capita. We then
estimate auxiliary VAR models, individually adding these components. We find that in all
sectors except for Transportation, per capita emissions initially decline in response to an EST
shock, but then follow a hump-shaped increase. This rebound of per capita emissions mimics
the response of per capita fossil fuel consumption. Moreover, the use of fossil fuels embodied
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in electricity consumption persistently increases in all end-use sectors, again with the excep-
tion of Transportation. In that sector, electricity accounted for a very small share of energy
consumed over our sample period. Hence, while the EST shock is associated with a substitu-
tion away from fossil fuels towards electricity, historically a sizable fraction of this additional
electricity has been produced using fossil fuels. Consequently, this compositional change as
a result of technological innovations did not contribute to the reduction of emissions in our
sample.

Importantly, while we find that energy-saving technological advances did not lead to a
reduction of emissions in the medium run, we also show that they only explain less than a
third of their medium-run variation. Hence, other factors than technology must have caused the
observed decline of per capita emissions in the U.S. economy in recent decades. Prior research
suggests several potential alternative drivers of this decline. First, U.S. consumers may have
shifted their consumption towards less carbon-intensive goods and services (Edenhofer et al.
2014). Second, high-income countries such as the U.S. have increasingly outsourced emission-
intensive production and reduced emissions at home (Copeland et al. 2022). Finally, although
there have been limited regulations with regards to CO2 emissions at the national level in
our sample period, U.S. firms have been increasingly required to install effective pollution
abatement technologies by federal and state agencies (Henderson 1996; Chay and Greenstone
2005). Since different types of pollution are correlated, these regulations might have indirectly
contributed to a reduction in carbon emissions (Shapiro and Walker 2018).

We subject our findings to a host of robustness checks. First, we show that orthogonalizing
the two technology shocks with respect to a business cycle frequency fossil energy-price shock
does not change our results. Second, we document that they are also essentially unchanged
when we rely on a broad measure of energy consumption that additionally includes renewable
and nuclear energy and excludes electrical system energy losses. Third, we illustrate that our
results are robust to considering departures from the baseline model in terms of the values for
the hyperparameters used in the Bayesian estimation of the VAR, the horizon used for imposing
sign restrictions, and considering different subsamples. Fourth, we also show robustness with
respect to recovering the long-run innovations in the time rather than the frequency domain.
Specifically, we follow Francis, Owyang, Roush and DiCecio (2014) and Kurmann and Sims
(2021) and alternatively recover two innovations as the major driver of fossil energy intensity
and TFP at a long but finite horizon. The resulting macroeconomic dynamics are essentially
identical to those implied by our baseline frequency domain identification.

Our paper is related to several strands of the literature. The first uses microeconomic data
to document a strong negative relationship between productivity and emissions, albeit without
disentangling between different forms of input-saving technological changes (Bloom, Genakos,
Martin and Sadun 2010; Cui, Lapan and Moschini 2016; Holladay 2016; Shapiro and Walker
2018; Forslid, Okubo and Ulltveit-Moe 2018). A second strand develops models of endoge-
nous, directed technical change with energy-saving technology (Hassler, Krusell and Olovsson
2021, 2022; Casey 2023). Hassler et al. (2021) aim at understanding the income share of energy
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in the U.S. in the long-run. A similar model is used in Hassler et al. (2022) to study the use
of oil at the global level and Casey (2023) who builds on this framework to study the long-run
effects of climate policies on energy consumption.1 We rely on the models of Hassler et al.
(2021) and Casey (2023) to derive identifying restrictions which allow us to empirically isolate
shocks to input-saving technologies for energy versus other inputs. Applying these restrictions
in a quarterly structural VAR of the U.S. economy, we then study their dynamic effects on
emissions and the macroeconomy.

The third strand is the literature that employs structural VARs to disentangle different types
of technology shocks. Examples include Fisher (2006), Galí and Gambetti (2009), and Altig,
Christiano, Eichenbaum and Lindé (2011). In line with these studies, we use a representation of
the data in which two underlying technology shocks capture the bulk of the long-run variation
in TFP. We then attribute these innovations to two orthogonal structural shocks with different
implications for the efficient use of various production inputs, including energy. We find that
the energy-saving technology shock, which is associated with a persistently lower fossil fuel
income share, substantially contributes to the longer-run movements in TFP and real activity
and implies impulse responses similar to TFP news shocks identified in the prior literature
(e.g. Kurmann and Sims 2021). The orthogonal NEST shock, in turn, increases the energy
income share in the medium-run and features mean-reverting dynamics of real output similar
to the surprise TFP innovations identified by Barsky and Sims (2011) and Amir-Ahmadi and
Drautzburg (2021).2

A related recent paper is Känzig and Williamson (2024). These authors use a max-share
approach in the time domain to identify first a fossil energy price shock, second a residual
shock that explains the maximal medium-run share of variation in capital/labor augmenting
technology while being orthogonal to the energy price shock, and third a residual energy-saving
shock that explains the most of the medium-run variation of energy-saving technology while
being orthogonal to the other two shocks. They find that the energy-saving technology shock
accounts for only around 10-20 percent of the business cycle variation in output and fossil
energy consumption. Consistent with our results, Känzig and Williamson (2024) find that a
large share of the variation in fossil energy consumption is unexplained by the energy-saving
technology shock. In contrast to their findings, however, our joint identification of energy-
saving and non-energy-saving technology shocks implies a substantially larger contribution of
the EST shock for output and its components.

1The mechanism described in these models finds support in micro-empirical studies which document that
higher energy prices cause an increase in energy-patenting intensity and raise R&D spending in polluting firms
(Popp 2002; Aghion, Dechezleprêtre, Hémous, Martin and Van Reenen 2016; Brown, Martinsson and Thomann
2022).

2In a related paper, Khan, Metaxoglou, Knittel and Papineau (2019) estimate structural VARs on U.S. macroe-
conomic and emission data. They document that a significant fraction of the variation in per capita emissions
is unexplained by news and surprise technology shocks. We explicitly separate between two input-saving tech-
nologies and find that both types of technology shocks combined explain only a moderate share of per capita
carbon emissions. In addition, energy-saving technology innovations are associated with a hump-shaped rebound
in aggregate carbon emissions in recent decades.
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The fourth strand is the literature aiming to quantify the rebound effect in fossil energy use
and carbon emissions after increases in energy efficiency. As documented in review articles by
Gillingham, Rapson and Wagner (2016) and Brockway et al. (2021), while different theoretical
mechanisms have been proposed to generate rebound effects, the literature is inconclusive about
their macroeconomic importance. To the best of our knowledge, our study is one of the first
to document an economy-wide rebound effect using state-of-art macroeconometric methods.
An exception is Bruns, Moneta and Stern (2021). These authors explore the effects of an
energy efficiency shock, which they identify as an innovation that generates a contemporaneous
reduction in energy use and is orthogonal to innovations to energy prices and GDP. In contrast,
we derive identifying restrictions from frontier models of directed technical change and provide
evidence of a rebound effect on a macroeconomic scale following improvements in energy
efficiency. Our results are also consistent with Bolton et al. (2023) who document using patent
data that fuel efficiency innovations lower the emission intensity but at the same time lead to
more sales and investment and – ultimately – higher emissions.

The remainder of this paper is organized as follows. Section 2 summarizes the econometric
methodology used to identify the shocks. Section 3 describes the data and discusses the speci-
fication of the VAR model. In Section 4, we then present the results of our analysis and provide
robustness checks. Section 5 concludes.

2 Identification of an Energy-Saving Technology Shock

This section presents our empirical approach to identifying an energy-saving technology shock
in a structural VAR. We estimate the VAR using standard Bayesian methods and the Minnesota
prior. Online Appendix A details the estimation approach. Given the posterior distribution
of the VAR parameters, we recover two innovations that explain the bulk of low frequency
variations in the intensity of energy use per unit of output and TFP. In a second step, we rotate
these innovations into two orthogonal structural shocks. We achieve identification by means of
sign restrictions. An energy-saving technology shock is a shock that lowers energy intensity
and the income share of energy. The orthogonal non-energy-saving technology shock, in turn,
increases TFP and the energy income share in the medium-run.

2.1 Assumptions Underlying the Identification Approach

We now discuss three assumptions that are sufficient to disentangle between the two shocks.

ASSUMPTION 1. Output is determined by a CES production function as considered e.g. in
Hassler et al. (2021) and Casey (2023)

yt = F(Atkα
t l1−α

t ,Aetet) =

[
(1− γ)

(
Atkα

t l1−α
t

) ε−1
ε + γ (Aetet)

ε−1
ε

] ε

ε−1

(1)
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where yt is output, kt and lt are capital and labor, and et is (fossil) energy use. The two variables
At and Aet are the input-saving technology levels for capital/labor and energy, respectively. γ is
a share parameter determining the relative importance of the two factors. Consistent with the
models of Hassler et al. (2021) and Casey (2023), we assume that there is a low short-run
substitutability between energy and the capital/labor input, i.e. ε < 1.

ASSUMPTION 2. The ratio of energy to the capital/labor composite (measured in efficiency
units), Aetet/Atkα

t l1−α
t , follows a stationary stochastic process.

This assumption is consistent with the balanced-growth path of standard macroeconomic
models which features identical growth rates for output, consumption and capital. Since the
production function is homogenous-of-degree-one, in steady state both factors must then grow
at the rate of output.

By combining these two assumptions, we can write the following two expressions for en-
ergy intensity and the ratio of output over capital/labor composite

yt

et
= Aet

yt

Aetet
= AetF

(
Atkα

t l1−α
t

Aetet
,1

)
= Aet

(1− γ)

(
Atkα

t l1−α
t

Aetet

) ε−1
ε

+ γ


ε

ε−1

(2)

yt

kα
t l1−α

t
= At

yt

Atkα
t l1−α

t
= AtF

(
1,

Aetet

Atkα
t l1−α

t

)
= At

[
(1− γ)+ γ

(
Aetet

Atkα
t l1−α

t

) ε−1
ε

] ε

ε−1

(3)

or, in logs,

ln
(

yt

et

)
= ln(Aet)+ξt (4)

ln
(

yt

kα
t l1−α

t

)
= ln(At)+ψt (5)

where ξt = ln
[
F(Atkα

t l1−α
t /Aetet ,1)

]
and ψt = ln

[
F(1,Aetet/Atkα

t l1−α
t )

]
are stationary under

the above-mentioned assumptions. Equations (4)-(5) are key to our identification approach.
They imply that the only sources of long-run variations in the output intensity of energy use
and TFP are permanent shocks to Aet and At .

Notice that these two assumptions allow for Ae and A to be endogenous to one another–
consistent with the notion that they are jointly determined in the longer-run. We rely on a two-
shock representation of the long-run growth in Ae and A. To illustrate this, we follow Hassler
et al. (2021) where directing R&D resources to increase the growth of one form of technology
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comes at the expense of lowering growth for the other. As a result, there is a trade-off between
the two forms of input-saving given by

G
(

1
exp(νAt)

At+1

At
,

1
exp(νAet)

Aet+1

Aet

)
= 0, (6)

where νAet is the energy-saving technology shock and νAt is the capital/labor augmenting tech-
nology shock with mean zero and variance σ2

Ae
and σ2

A, respectively. Here, G is strictly increas-
ing in both arguments. In a structural VAR, it would be impossible to separate these two shocks
by simply constructing two innovations that explain the low frequency variations in energy in-
tensity and TFP. The identification of the two shocks must therefore come from additional
identifying restrictions. We rely on the following assumption to achieve identification.

ASSUMPTION 3. The medium-run income share of (fossil) energy falls following a shock
to Aet , whereas it increases following a shock to At .

This assumption is consistent with the medium-run implications of energy-saving techno-
logical changes in the models of Hassler et al. (2021) and Casey (2023). Consistent with these
models, an increase in Aet lowers the income share of energy in subsequent periods.3 However,
it also lowers the incentives to allocate R&D resources to improve the growth rate of Aet . Thus,
the growth rate of Aet decreases and the growth rate of At increases. Both of these effects will
then contribute to bringing the energy share back to its level on the balanced growth path. By a
similar reasoning, an increase in At will lead to the opposite conclusion.

Taken together, Assumptions 1-3 provide sufficient restrictions to jointly identify the shocks
to Aet and At . In a VAR including energy intensity, TFP and the energy share, we jointly identify
the two shocks as linear combinations of two innovations that explain the bulk of the long-
run variations in energy intensity and TFP, conditionally on satisfying sign restrictions on the
impulse response functions. Given the link between the shocks and the long-run innovations
to energy intensity and TFP, we naturally impose the sign of the response of energy intensity
to be negative for an EST shock and the response of TFP to be positive for a NEST shock.
Moreover, based on Assumption 3 we disentangle between the two shocks by imposing the sign
restrictions that an EST shock lowers the energy income share while a NEST shock increases
it. We impose these sign restrictions on the average of the impulse response functions from the
moment when the shock hits up to some medium-run horizon, 0 ≤ h ≤ h̄. Table 1 summarizes
the identifying restrictions.

The method we use to recover such long-run innovations closely follows the approach of
Angeletos et al. (2020). These authors build on the approach of Uhlig (2003) that is widely

3The income share of energy is given by the following expression eshare
t = pt et

yt
=(

(1−γ)
γ

(
Aet et

At kα
t l1−α

t

) 1−ε
ε

+1
)−1

.
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Table 1: IDENTIFYING RESTRICTIONS IN THE BASELINE VAR
SHOCK

VARIABLE EST SHOCK NEST SHOCK

Fossil energy intensity − (avg. over horizons 0 ≤ h ≤ h̄) n/a
TFP n/a + (avg. over horizons 0 ≤ h ≤ h̄)
Fossil income share − (avg. over horizons 0 ≤ h ≤ h̄) + (avg. over horizons 0 ≤ h ≤ h̄)
Other variables n/a n/a

Notes: Restrictions on the average impulse responses of the variables over the horizons 0 ≤ h ≤ h̄ for the EST and
NEST shocks. Respectively, ± and n/a denote the sign restrictions and unrestricted responses.

used for identification of long-run technology shocks in structural VARs (Barsky and Sims
2011; Kurmann and Sims 2021; Francis et al. 2014), and recover innovations that explain most
of the variation of some target variable of interest in a particular frequency band. We then
achieve identification by imposing restrictions on the sign of the impulse response functions
following Uhlig (2005) and Rubio-Ramírez et al. (2010).

2.2 Econometric Approach

Let Xt denote an n× 1 vector of quarterly time series which contains the energy intensity of
U.S. output, TFP, the income share of energy, and a number of additional variables, which were
chosen to represent different aspects of real activity, inflation and financial markets in the U.S.
economy. We model these time series to have the VAR representation

A(L)Xt = ηt , (7)

where A(L) = I −A1L− ·· · −ApLp is a lag polynomial matrix, and ηt is the vector of VAR
innovations with mean zero and variance-covariance matrix Ση . From Equation (7), one obtains
the reduced-form moving average representation which expresses Xt in terms of current and
past values of innovations:

Xt = A(L)−1
ηt . (8)

We assume that the innovations ηt summarizing the joint dynamics among the variables in
Xt are linear combinations of structural shocks, denoted by the n×1 vector νt :

ηt = Hνt . (9)

The structural shocks νt have the variance-covariance matrix Σν . Under the unit standard de-
viation normalization (Σν = I), one can write any matrix H as H = Chol(Ση)Q where Q is a
n×n orthonormal matrix (Q′Q = I), and Chol denotes the Cholesky factorization. This implies
the structural moving average representation

Xt = B(L)Qνt , with B(L) = A(L)−1Chol(Ση), (10)
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where the impulse response function of Xt with respect to the ith shock is given by B(L)Qi with
Qi denoting the ith column of Q. Any potential mapping from the structural shocks νt to the
innovations ηt can thus be captured by a choice of the matrix Q.

The contribution of the mth shock to the spectral density of X jt over the frequency band
[ω,ω] is given by

∫
ω∈[ω,ω]

(
B[ j] (e−iω)QmB[ j] (e−iω)Qm

)
, where B[ j] (e−iω) is the jth row of

the lag polynomial evaluated at z represented by z = e−iω for i =
√
−1, Qm is the mth column

of Q, and x denotes the conjugate transpose of x. The relative contribution of shock m to the
variation of variable j is then

Ω j,m (ω,ω) =

∫
ω∈[ω,ω]

(
B[ j] (e−iω)QmB[ j] (e−iω)Qm

)
∫

ω∈[ω,ω]

(
B[ j] (e−iω)B[ j] (e−iω)

)
= Q′

m

∫ω∈[ω,ω]

(
B[ j] (e−iω)B[ j] (e−iω))

∫
ω∈[ω,ω]

(
B[ j] (e−iω)B[ j] (e−iω)

)
Qm (11)

or Ω j,m (ω,ω) = Q′
mS j (ω,ω)Qm where S j (ω,ω) =

∫
ω∈[ω,ω]

(
B[ j](e−iω )B[ j](e−iω)

)
∫

ω∈[ω,ω]

(
B[ j](e−iω )B[ j](e−iω )

) .

We seek to identify two shocks that jointly explain the maximum shares of longer-run vari-
ation in two variables: TFP and the ratio of energy consumption over real output. We capture
the longer-run by focusing on frequencies longer than 80 quarters (0 ≤ ω ≤ 2π/80). To dis-
entangle between an EST and NEST shock, we then rely on sign restrictions on the average
of the impulse responses up to 80 quarters ahead. Let the EST shock be indexed by 1 and
the NEST shock by 2. To achieve identification, we start in step (1) with an orthonormal ma-
trix Q = [Q1 Q2 Q•] with its first two columns selected by solving the following optimization
problem

argmax
Q1,Q2

Ωenergy intensity,1 (0,2π/80)+Ωenergy intensity,2 (0,2π/80)+

ΩTFP,1 (0,2π/80)+ΩTFP,2 (0,2π/80) , (12)

subject to the restrictions Q′
1Q1 = 1, Q′

2Q2 = 1 and Q′
2Q1 = 0. This implies that Q1 and Q2 are

the eigenvectors associated with the first two largest eigenvalues of Senergy intensity (0,2π/80)+

S TFP (0,2π/80). In step (2), we then post-multiply Q by a n×n matrix W =

(
W1:2 0

0 In−2

)
where W1:2 is a 2×2 orthonormal matrix that is obtained from the QR decomposition of a matrix
of the same dimensions with elements drawn from the standard normal distribution. Letting
r j,m (h) =Ch, jm denote the resulting impulse response function for variable j for shock m where
Ch is the hth lag matrix in C(L) = B(L)QW , we identify the two shocks by repeating step (2)
multiple times until the resulting impulse response functions satisfy the sign restrictions in
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Table 1. The restrictions are therefore given by
1

80 ∑
79
h=0 r energy intensity,1 (h)≤ 0, 1

80 ∑
79
h=0 r energy share,1 (h)≤ 0;

1
80 ∑

79
h=0 r TFP,2 (h)≥ 0, 1

80 ∑
79
h=0 r energy share,2 (h)≥ 0.

(13)

While our approach of disentangling energy-saving and non-energy-saving technology shocks
shares some features with that in Känzig and Williamson (2024), there are at least three impor-
tant differences. First, we jointly identify two shocks instead of identifying the EST shock as
a residual shock that is orthogonal to other innovations. This allows us to disentangle energy-
saving from non-energy-saving technological innovations without imposing a specific ordering.
Second, we use the observed energy intensity and TFP directly as target variables rather than
relying on series of input-saving technology series backed out from a production function. We
document the robustness of our results to varying the target variables in Sections 4.2 and 4.4.2.
Third, in line with Angeletos et al. 2020 we identify shocks in the frequency domain. This
approach avoids relying on a specific target horizon in the time domain to construct the long-
run technology innovations (Francis et al. 2014; Kurmann and Sims 2021). We document the
robustness of our results when using a time-domain approach in Section 4.4.3.

3 Data and VAR Specification

The data we employ to estimate our baseline VAR consist of quarterly observations on 13 vari-
ables. Following the model of Hassler et al. (2021) and to account for the fact that U.S. energy
consumption has been dominated by fossil fuels in our sample, our baseline specification relies
on the intensity of fossil energy and its income share as target variables. In Section 4.4.2 we
document the robustness of our main findings with respect to a broader measure of energy con-
sumption, which additionally includes renewable and nuclear energy and excludes electrical
system energy losses.

For our baseline analysis, we measure the energy intensity of U.S. output as the ratio of
fossil energy use over real GDP, both expressed in per capita terms. We further construct
a composite index of real fossil fuel prices that includes coal, natural gas and petroleum,
closely following Hassler et al. (2021). The remaining ten variables are chosen to represent
key macroeconomic and financial aggregates of the U.S. economy. These are Fernald (2014)’s
utilization-adjusted TFP, the inverse of the relative price of investment goods from Justiniano,
Primiceri and Tambalotti (2010), the per capita levels of hours worked in the non-farm business
sector, real personal consumption expenditures (PCE), real private fixed investment, the change
in private inventory investment, the federal funds rate, PCE inflation, the real S&P 500 index
and a trade-weighted index of real exchange rates where the latter two are deflated by the GDP
deflator.
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We also entertain several extensions of the baseline VAR to study the effects of the identified
shocks on the breakdown of CO2 emissions and fossil fuel consumption by end-use sectors.
Specifically, we estimate larger VARs, each additionally including a variable capturing the per
capita value of CO2 emissions and end-use fossil fuel consumption, and the ratio of the fossil
fuel embodied in electricity use over the end-use of fossil fuel in each of the following sectors:
Industrial, Residential, Commercial, and Transportation.

We corroborate our identification by showing that the estimated energy-saving technology
shock series is highly correlated with future growth in several measures of energy-related tech-
nological innovation. Specifically, we consider indicators of energy-saving patents and govern-
ment research, development and demonstration (RD&D) budget for energy-related technolo-
gies. We obtain the former as the number of triadic patents which are related to technologies
related to mitigation and adaptation against climate change and improved power network op-
eration. These are subsumed under the Y02/Y04S scheme in the standard patent classification
(see Veefkind et al. 2012; Angelucci et al. 2018, Popp 2019). Our patent data are drawn from
the February 2022 version of the OECD Triadic Patent Families database.4 We also obtain two
measures of government energy RD&D budget. The first measure involves RD&D for all en-
ergy technologies. The second captures only those technologies that are related to production,
conversion and combustion of fossil fuels and CO2 capture and storage, which are classified as
“Group 2–Fossil Fuels: Oil, Gas and Coal” (see IEA 2011). The government RD&D budget
data are obtained from the International Energy Agency (IEA) Energy Technology RD&D Bud-
gets database.5 The data sources and the construction of these public energy RD&D measures
are detailed in Online Appendix B.

Moreover, we obtain monthly emission and energy consumption data from the U.S. Energy
Information Administration (EIA). We first seasonally adjust all of these series using the X-12
method and then convert them to quarterly values by summing over the quarter’s three monthly
values. Finally, the macroeconomic indicators were all obtained from the Federal Reserve
Economic Database (FRED) and the Bureau of Economic Analysis (BEA). We include the
PCE inflation rate, the Federal Funds rate, and the change in private inventory investment in
percent and all of the remaining variables in natural logs.

Our baseline sample starts in 1973:I which is the earliest date for which the fossil fuel
and emission data are available quarterly, and ends in 2019:IV, and thus before the COVID-19
pandemic started. The VARs are estimated with four lags using Bayesian methods subject to

4The dataset is made available through the OECD Intellectual property (IP) statistics and analysis website
at https://www.oecd.org/sti/intellectual-property-statistics-and-analysis.htm#ip-data. We follow standard practice
and use a count of all triadic patents by application date which are filed in each quarter in the U.S. Patent office
(USPTO), the European Patent Office (EPO), and the Japanese Patent Office (JPO). While we consider patents
that have been filed in all three major patent offices, we restrict our sample to patents granted by the USPTO. Until
2001, the USPTO has published only granted patent applications. To have a consistent series before and after
2001, we counted only those triadic patents which have been granted by the USPTO. For more detail on triadic
patents and uses of patent statistics, see Dernis and Khan (2004), Griliches (1990), OECD (2009).

5The database is made available at https://www.iea.org/data-and-statistics/data-product/energy-technology-rd-
and-d-budget-database-2.
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a Minnesota prior. We generate 20,000 draws from the posterior distribution via the Gibbs
sampler, where we discard the first 4,000 as burn-in and keep every fourth draw from the
subsequent 16,000. In Online Appendix A, we provide details on the Bayesian estimation. In
Section 4.4, we further show that our main findings are robust to using alternative values for
the hyperparameters, and a sample period excluding the shale gas boom.

4 Results

In this section we document our empirical results. We provide impulse response functions
(IRFs) and forecast error variance decompositions (FEVDs) for the energy-saving and non-
energy-saving technology shock in Section 4.1. Section 4.2 documents that the estimated EST
shock is indeed strongly correlated with measures of energy-saving innovations. In Section 4.3,
we then shed light on the economic underpinnings of the rebound effect for fossil fuel consump-
tion and carbon emissions that we document. Finally, section 4.4 shows the robustness of our
baseline results to (i) orthogonalizing our shocks with respect to a fossil energy price shock;
(ii) adding renewable and nuclear energy; (iii) the use of different hyperparameter values for
the Bayesian estimation, different horizons for the sign-restrictions, different sample periods
and an alternative approach to recovering long-run innovations.

4.1 Energy-Saving and Non-Energy-Saving Technology Shocks

The top panel of Figure 1 provides the posterior median IRF of the variables in our baseline
VAR for the two shocks, along with the 16-84 percent posterior coverage intervals. The top-left
chart shows that on impact the EST shock is associated with a strongly significant one percent
decline of fossil energy intensity, measured as fossil fuel consumption per unit of output. While
the fossil fuel intensity reverts some of the initial decline in the following quarters, it remains
significantly compressed thereafter. In contrast, the NEST shock is associated with an increase

of the fossil fuel intensity, which gradually returns to its initial value.
Let’s turn to the response of TFP shown in the next chart to the right. Initially, the EST

shock has no effect on TFP, but rises significantly within two years and remains strongly el-
evated even ten years after the shock. In sharp contrast, TFP jumps significantly on impact
following an NEST shock, but then slowly reverts back to its pre-shock level. The negative
response of the energy income share follows directly from the sign restrictions we impose. The
response of the income share to an EST shock echoes the statistically significant decline of
the fossil fuel price shown in the top-right chart of Figure 1. Importantly, the NEST shock is
instead associated with a similarly persistent, protracted rise of energy prices.

Turning to the first chart in the second row, we see that fossil fuel consumption per capita
strongly declines on impact following the EST shock, but then reverts back to its initial level
within two years. Hence, we see a rebound effect of fossil fuel consumption: an energy-saving
technology shock which persistently reduces the energy intensity of output does not lead to
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persistently lower fossil fuel consumption. The response to the NEST shock is very different.
It is associated with a pronounced initial increase of fossil fuel consumption which then slowly
dissipates within five years of the shock. Consistent with the finding that the NEST shock is
also associated with a protracted increase in fuel prices, fossil fuel consumption turns negative
after some years.

The short-run response of fossil energy consumption for the two technology shocks is con-
sistent with the directed technical change models of Hassler et al. (2021) and Casey (2023):
energy-saving innovations allow economic agents to use less energy for operating capital and
labor. In contrast, non-energy-saving innovations increase energy use, consistent with a low
short-run substitutability between energy and the other production factors. In an alternative
identification approach documented in Section 4.4.2, we back out two series representing
energy-saving and capital/labor-augmenting technologies given a low short-run substitution
elasticity between these input factors as suggested by Hassler et al. (2021). Identifying energy-
saving and capital-labor-augmenting technology shocks from sign restrictions imposed on the
IRFs of these two variables, we obtain essentially the same results.

Our finding that an EST shock only leads to a temporary decline of aggregate fossil fuel
consumption followed by a hump-shaped increase represents novel evidence for a rebound
effect in economy-wide fossil energy consumption.6 Such rebound effects have first been dis-
cussed by Jevons (1865) related to the use of coal in England during the industrial revolution.
He made the paradoxical observation that coal consumption increased after the introduction
of James Watt’s steam engine which greatly enhanced the energy efficiency relative to earlier
technologies. The more efficient machines were then widely adopted in other sectors of the
economy, thus leading to an increase in the demand for coal. While a large literature discusses
whether rebound effects for energy usage exist at the firm or industry level, evidence for energy
consumption at an aggregate level has been scarce thus far (Gillingham et al. 2016; Brockway
et al. 2021). As we will see below, the rebound effect in fossil energy consumption that we
document also gives rise to a rebound effect of carbon emissions. In Section 4.3, we explore
this issue in more detail.

Why does fossil fuel consumption rebound although the fossil energy intensity of output is
persistently reduced? The reason is that output features a pronounced hump-shaped increase
in response to the EST shock, as shown in the second chart of the same row. While the initial
response of output per capita is small, it rises gradually over the first five years and peaks at a
level a little less than one percent above its initial value, before declining somewhat over the
next several years. Ten years after the shock, output is still a strongly statistically significant
0.7 percent higher than its pre-shock value, highlighting the long-term impact of energy-saving
technology shocks on the real economy. The strong and persistent increase of output is driven
by several of its major components. Consumption increases sharply over the first five years

6Bruns, Moneta and Stern (2021) use a reduced-form statistical approach to identify an energy-efficiency shock
which is orthogonal to innovations to GDP and energy prices in a VAR for the U.S. economy. They find that overall
energy consumption significantly drops on impact but then recovers in subsequent quarters following this shock.
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after the shock and remains about 0.8 percent above its initial level at the ten year horizon.
Fixed investment and hours worked show a pronounced hump-shaped response. Interestingly,
the EST shock is associated with a significant negative response of inventory investment within
two quarters. Hence, firms reduce their inventories at the same time as they increase their
fixed investment, suggesting that much of this investment is replacing existing capital stock to
enhance efficiency. The inverse of the relative price of investment goods also rises persistently.
This adds support to the EST shock being associated with gradual improvements in the quality
of newly produced investment goods.

Let us now turn to the IRFs for the NEST shock. In sharp contrast to the results above, this
shock only has a transitory impact on output and its components. Output, consumption and
fixed investment peak within ten quarters before reverting to their pre-shock values, consistent
with the persistent but transitory effect on TFP. Moreover, hours worked briefly decline on
impact and then experience a short-lived hump-shaped increase. Similarly as for an EST shock,
the inverse of the relative price of investment goods rises persistently.

How quantitatively important are the two technology shocks for business cycle variation?
The variance decompositions provided in the bottom panel of Figure 1 paint quite different pic-
tures. The EST shock explains more than 30 percent of the variation of fossil fuel consumption
per unit of output at all horizons, highlighting its importance for energy efficiency. It is also
an important driver of TFP. While it captures less than ten percent of TFP variation during the
first five years, this share gradually increases to around 40 percent after ten years. Conversely,
the NEST shock explains only small fractions of fossil fuel intensity, but initially a somewhat
larger share of TFP variation. Combined, both technology shocks capture more than 80 percent
of the longer-run variation in productivity and output. We also find that both shocks account
for increasing fractions of the fossil energy income share and fuel prices at longer horizons,
albeit with a larger contribution by the EST shock. The FEVDs for the remaining variables
echo our previous findings that the EST shock is associated with pronounced and persistent
macroeconomic dynamics, while the NEST shock contributes more at shorter horizons.

A key contribution of our analysis is to document that the EST and NEST shocks give
rise to substantially different macroeconomic dynamics. Moreover, as evidenced in Figure 2,
combined they capture large shares of variation of key macroeconomic aggregates. Much of
the previous literature has focused on TFP news shocks as a key driver of longer-run variation
in productivity and output (Beaudry and Portier (2006); Barsky and Sims (2011)). As a point of
reference, we also construct a TFP news shock as an innovation explaining a maximum share
of TFP variation over low frequencies of 80 quarters and beyond. Figure 2 shows the variance
shares explained by this TFP news shock, along with those implied by the EST and NEST
shocks, individually and combined. While the overall shares of variation captured by the two
shocks together are similar to those explained by the TFP news shock for output, consumption
and fixed investment, the EST and NEST shocks combined account for substantially larger
variance shares for TFP itself and some other variables, most importantly the energy income
share of output and energy prices. Hence, ignoring the different sources of productivity growth
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one would underestimate the importance of technological change for longer-run productivity.
One might be concerned that the two identified technology shocks to some degree capture

persistent demand-driven innovations. However, if that was the case, they would likely give
rise to substantial business cycle variations in the price of fossil energy. As the top-right chart
in the bottom panel of Figure 1 shows, this is not the case. Both shocks at best explain about
15 percent of the variation of energy prices at horizons one to eight years ahead. In Section
4.4, we explicitly orthogonalize the two shocks with respect to a fossil energy price shock and
show that our results don’t change.

Note also that our finding that energy-saving technology shocks – when identified jointly

with capital/labor augmenting technology shocks – account for a large fraction of macroeco-
nomic variation stands in contrast to the results in Känzig and Williamson (2024) who find that
residual energy-saving technology shocks capture only about 10-20 percent of the medium-run
variation in output. That said, these authors’ finding that the two technology shocks cannot
account for the bulk of the variation in fossil energy consumption is consistent with our results.

4.2 EST Shocks and Measures of Energy-Saving Technology

Our identification assumptions were informed by models of directed technical change and en-
ergy efficiency where the elasticity of substitution between energy and capital/labor is low. We
now corroborate the interpretation of the identified EST shock as capturing energy-saving tech-
nological innovations. We do so in two complementary ways. First, we contrast the estimated
shock series from our baseline VAR with measures of energy-related technological change.
Specifically, we construct a measure of clean energy patenting intensity as the share of the
number of Y02/Y04S patents to the overall number of patents using the OECD Triadic Patent
Families database. As emphasized by Popp (2019), the Y02/Y04S classification offers the
most reliable scheme for identifying clean energy technologies. Those patents cover technol-
ogy subclasses related to adaptation to climate change (Y02A), buildings (Y02B), capture and
storage of greenhouse gases (Y02C), ICT aiming at the reduction of own energy use (Y02D),
production, distribution and transport of energy (Y02E), industry and agriculture (Y02P), trans-
portation (Y02T), waste and wastewater (Y02W) and smart grids (Y04S). The analysis below
focuses on the total number of Y02/Y04S patents, as well as the number of the patents covered
in these subclasses. We also use measures of government RD&D in different energy technolo-
gies as a share of the NIPA government R&D investment from the IEA Energy Technology
RD&D Budgets database.

To compare the dynamics of our identified EST shock series with these measures of inno-
vation, we perform the following exercise. First, since the government RD&D budget series
is only available at the annual frequency, we aggregate the quarterly median estimated shock
series to the annual frequency by averaging over four quarters in each year. We then run the
annual median shock through an AR(1) filter with autoregressive coefficient of 0.9 and use an
OLS regression to describe the growth in the energy innovation indicators associated with the
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Table 2: Identifying Restrictions in the Extended VAR
SHOCK

VARIABLE EST SHOCK NEST SHOCK

Energy-saving
technology (Ae) + (avg. over horizons 0 ≤ h ≤ h̄) n/a

Capital/labor augmenting
technology (A) n/a + (avg. over horizons 0 ≤ h ≤ h̄)

Fossil income share − (avg. over horizons 0 ≤ h ≤ h̄) + (avg. over horizons 0 ≤ h ≤ h̄)
Other variables n/a n/a

Notes: Restrictions on the average impulse responses of the variables over the horizons 0 ≤ h ≤ h̄ for the EST and
NEST shocks. Respectively, ± and n/a denote the sign restrictions and unrestricted responses.

smoothed shock series. To be precise, we regress k-year ahead growth of each energy innova-
tion indicator on each of the smoothed series for the EST and NEST shocks with k equal to 2,
4, 6, 8 and 10 years. Figure 3 shows the estimated slope obtained from those regressions along
with robust standard errors. The results are provided for those patent subclasses which have the
largest correlation with our shock series. They show that the energy-saving technology shock is
strongly associated with accelerated growth in patenting intensity in most of the clean energy
technology subclasses, as well as with future growth in the public energy RD&D shares. In
contrast, the NEST shock exhibits little correlation with these measures, except for the Y04S
subclass which covers the mitigation technologies related to smart grids.

We complement this exercise with an alternative structural VAR analysis that explicitly in-
cludes measures of input-saving technologies. These technology indicators are backed out from
the production function (1) by setting the substitution elasticity equal to ε = 0.02, in line with
Hassler et al. (2021). We then replace TFP and energy intensity with the capital/labor augment-
ing and energy-saving technology series in the VAR model. Online Appendix C describes the
details on the construction of these technology series. Figure 4 depicts the resulting energy-
saving technology level (Ae) together with the capital/labor augmenting technology level (A).7

We use this model to identify shocks to Ae and A and contrast the resulting impulse re-
sponses with those estimated from our baseline specification. Specifically, we first recover
two innovations that jointly target the variations in the two input-saving technology series
over frequencies of 80 quarters and beyond. Second, we rotate them into an energy-saving
and capital/labor augmenting technology shock by imposing sign restrictions such that (i) the
energy-saving technology shock increases the level of energy-saving technology and lowers
the fossil energy share, and (ii) a capital/labor augmenting technology shock increases the level
of capital/labor augmenting technology and raises the fossil energy share. For both we main-
tain the sign-restricted horizons at 0 ≤ h ≤ 79 quarters as in our baseline identification. These
alternative identifying restrictions are summarized in Table 2.

Figure 5 provides scatter plots of the two sets of identified technology shocks across the

7This can be compared to the right panel in Figure 3 in Hassler et al. (2021) which is based on annual data for
the period 1949- 2018. Instead, we use quarterly data on inputs and output for our sample from 1973:I to 2019:IV.
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baseline and the alternative identification. Both approaches yield highly correlated identified
shocks. Figure 6 shows the resulting median estimate of the impulse responses and the corre-
sponding variance contributions for the alternative shock identification. We superimpose the
corresponding results for the shocks identified in our baseline VAR as solid lines. The dashed
lines in the first two charts show that the EST shock is associated with a marked and persistent
increase in the energy-saving technology level and a delayed but long-lived increase in the cap-
ital/labor augmenting technology level. The properties of the remaining IRFs and FEVDs echo
our previous findings. We interpret the fact that the IRFs and FEVDs across the two identifica-
tion approaches are essentially identical as corroborating evidence that we capture the drivers of
the two types of input-saving technologies implied by the production function in Equation (1).

4.3 EST Shocks and the Rebound Effect in Carbon Emissions

We have shown in the previous section that the use of fossil fuels initially declines following
an energy-saving technology shock, but then quickly rebounds. In this section, we seek to
answer two follow-up questions. First, what role did changes in the energy mix of the U.S.
economy play in explaining this rebound effect? Second, what does this rebound of fossil fuel
use imply for carbon emissions? To answer these questions, we first propose a decomposition
of the carbon emission intensity and then estimate auxiliary VAR models which add carbon
emissions at the aggregate and sectoral level in Sections 4.3.1 and 4.3.2.

4.3.1 A Decomposition of U.S. Fossil Energy Mix and Carbon Emissions

Consider the following decomposition of the carbon emission intensity of output, denoted by
CO2t

Yt
:

CO2t

Yt
=

(
CO2t

Fuelt

)
×
(

Fuelt
Yt

)
. (14)

The emission intensity equals emissions per total fossil fuel use, CO2t
Fuelt

, multiplied by the fossil
energy intensity of output, Fuelt

Yt
. We can further decompose the total fossil fuel consumption

into the end-use of fossil fuels and fossil fuels consumed by the electric power sector, i.e.,
Fuelt = FuelEnd−Use

t +FuelEPowerSector
t . We can then write the fossil fuel intensity as equal to

the ratio of total to end-use fossil fuel use, Fuelt
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t
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. This yields

CO2t

Yt
=

(
CO2t

Fuelt

)
×
(

Fuelt
FuelEnd−Use

t

)
×

(
FuelEnd−Use

t
Yt

)
, (15)
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.
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The first term on the right-hand side captures the carbon emission intensity of fossil fuel con-
sumption. A decline in this component could be due e.g. to a compositional change between
coal and natural gas where the latter produces fewer emissions per unit of energy consumed.
The second term measures the fossil fuels embodied in electricity relative to fossil fuels directly
consumed by end-use sectors. Finally, the third term captures the fossil fuel end-use intensity
of output. The advantage of this decomposition is that it represents the carbon intensity of
output in terms of fossil fuels consumed directly as well as indirectly through electricity.8

The top panel of Figure 7 depicts the evolution of the emission intensity of output along
with its three components relative to their initial levels in 1973, the beginning of our sample.
The blue and purple lines show the emission intensity and end-use fossil intensity of output,
respectively. Both have seen a strong reduction of about 70% over the past five decades. That
said, for much of the sample there has been a wedge between the two series, which is explained
by the other two components in the decomposition. Specifically, the yellow line documents an
increase in the fossil fuel consumption embodied in electricity relative to the end-use of fossil
fuels. This shows that while the U.S. economy has relied less and less on direct fossil fuels over
the past several decades, it has increased its reliance on fossil fuels via the electric power sector.
Finally, the emission intensity of fossil fuel use (orange line) has been fairly stable over much
of the sample, but has experienced a decline in recent years that is likely primarily associated
with the shale gas revolution.

We now study the impulse responses of these components to an EST and a NEST shock.
We obtain these by re-estimating our baseline VAR, adding one at a time each of the measures
in logs. Hence, the sum of the three components equals the log emission intensity. Since the
third component measuring the emission intensity per unit of total fossil fuel consumption does
not move much over the sample, we drop it here for brevity. The results are shown in the
bottom panel of Figure 7. The impulse responses for the emission intensity closely echo the
result obtained for fossil fuel intensity documented above. Both experience a highly persistent
decline of about one percent in response to the EST shock. Looking at the components of
emission intensity, we see that the sharp initial decline of emission intensity is mainly driven
by a persistent reduction of the end-use fossil fuel intensity of output. At the same time, the
fossil fuel embodied in electricity sees a marked and persistent increase. Hence, the energy-
saving technology shock is associated with a substitution from direct fossil fuel end-use to
fossil fuels used in electricity.

In addition to the emission intensity of output, it is also instructive to study the impulse
responses of emissions per capita. These are provided in the last column of Figure 7. The EST
shock is associated with a sharp initial decline, followed by a strong hump-shaped rebound. It
takes ten years before emissions per capita are back to their initial level after the shock. Not

8In 2020, fossil fuels accounted for approximately 60% of the total energy consumed by the electric power
sector, with coal and natural gas being the primary inputs. The share of coal used to generate electricity relative
to overall coal consumption by the U.S. economy amounted to 90%. The share of natural gas used by the electric
power sector accounted for 40% of overall natural gas consumption. In turn, only about 1% of overall petroleum
consumption in the U.S. was used for electricity generation.
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surprisingly, this result closely mimics the corresponding dynamics of fossil fuel consumption.
The impulse responses for the NEST shock are quite different. The emission intensity rises

somewhat on impact and then declines, but the response is not statistically significant. This
increase is driven by a rise of both the end-use fossil fuel intensity as well as the fossil fuel use
embodied in electricity. Moreover, per capita emissions increase immediately and stay elevated
for about five years.

The top panel of Figure A.2 in the Online Appendix provides the corresponding FEVDs.
Two comments are in order. First, the EST shock accounts for sizable fractions of the variance
of both the end-use fossil fuel intensity and the emission intensity of U.S. output. At the
ten-year ahead forecast horizon, about 50 percent of their variation is explained by the shock.
Second, the bulk of variation of emissions per capita is left unexplained by the two shocks.
Combined, they explain less then 50 percent of the variation of per capita emissions. This
is consistent with Khan et al. (2019) who explore the effects of different news and surprise
technology shocks and document that none explains more than one third of the variation of
carbon emissions. It also suggests that other factors than technology must have caused the
observed decline of per capita emissions in the U.S. in recent decades.

4.3.2 Rebound Effect in Sector-Level Data

We have documented that emissions per capita mimic the strong rebound effect of fossil fuel
consumption. In this section, we further decompose emissions per capita at the sectoral level.
Specifically, we write

CO2i
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)
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for sector i ∈ {transportation, industrial, residential, and commercial}. Here, FuelEnd−Use,i
t de-

notes the fossil fuel consumed directly by the respective end-use sector, and Electricityi
t ×

SEPowerSector
t captures the fossil fuel embodied in electricity sales as well as electrical grid

losses associated with sector i, where

SEPowerSector
t =

FuelEPowerSector
t

FuelEPowerSector
t +RenewableEPowerSector

t +NuclearEPowerSector
t

, (17)

is the energy share of fossil fuel in the electric power sector.
The top panel of Figure 8 shows this decomposition for aggregate emissions per capita as

well as for the four end-use sectors. Several points are worth making. First, the blue lines show
a decline of emissions per capita at both the aggregate level and in all end-use sectors. That
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said, the magnitudes of these reductions are quite different across sectors. While emissions per
capita from the industrial and the residential sectors have declined by almost 60 and 50 percent
from 1973 until 2019, the reduction has been much less pronounced in the transportation and
commercial sector. Second, much of this reduction has been accounted for by a secular decline
of the direct end-use fossil fuel consumption per capita in all sectors (shown as purple lines).
Third, with the exception of the transportation sector which has historically used petroleum as
the main energy source, all four end-use sectors have increasingly relied on electricity over the
past several decades (as shown by the yellow lines). That said, the fossil fuels embodied in
electricity have declined in all sectors but the transportation sector since around 2008, consis-
tent with the shale gas boom. As a result, carbon emissions per unit of fossil fuel consumption
(shown as orange lines) have also seen a decline in recent years in almost all sectors.

We now study the impulse responses of these components to the EST and NEST shocks.
Specifically, we estimate auxiliary VARs adding them one at a time in log levels. Panel B
of Figure 8 provides the results. The top row shows that the emissions per capita from all
end-use sectors feature dynamics similar to the aggregate emissions per capita shown in the
top-right chart of Figure 7. Per capita emissions initially decline sharply, but then recover in
subsequent quarters in all sectors except for the Commercial sector. As can be seen in the
second row of Panel B of Figure 8, this rebound of per capita emissions is largely driven by the
fossil fuels directly consumed by these sectors. Finally, the fossil fuels embodied in electricity
consumption persistently increase in all end-use sectors but Transportation. Hence, energy-
saving technology shocks are associated with a broad-based substitution away from fossil fuels
towards electricity. However, in our sample period from 1973-2019 a sizable fraction of this
additional electricity has been produced using fossil fuels.

Turning to the IRFs for the NEST shock, we make the following observations. Emissions
per capita significantly increase in all end-use sectors, before reverting back to their initial
levels. These dynamics closely track those of the direct fossil fuel consumption in each of the
sectors, as shown in the middle panel of the figure. According to the decomposition in Equation
16, the difference between the IRFs for per capita emissions and per capita end-use of fossil
fuels is closely related to the IRFs for fossil fuels embodied in electricity. These show that
in contrast to the EST shock, the NEST shock is not associated with a significant substitution
away from direct fossil fuel consumption towards electricity.

The FEVDs associated with these impulse responses are provided in the second panel of
Figure A.2 in the Online Appendix. The main takeaway from these charts is that the bulk of
the variation of per capita emissions is unexplained by the two identified technology shocks,
despite the fact that particularly the EST shock explains a sizable fraction of the emission
intensity of output.
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4.4 Robustness Checks

4.4.1 The EST and NEST Shocks versus Fossil Energy Price Shocks

A potential concern is that our identified EST shock might be contaminated by shocks to the
price of fossil fuels. Particularly the large oil price shocks in the 1970s have been shown
to have triggered substantial technological progress in the use of fossil fuels (Hassler et al.
2021). Moreover, a growing literature documents microeconomic evidence for price increases
in carbon intensive inputs acting as an important catalyst for energy-saving technologies.9 We
have shown in Section 4.1 that the two technology shocks in our baseline analysis account for
only a small fraction of the business cycle variation in the real fossil fuel price. This suggests
little overlapping information with energy price shocks, as the existing literature often attributes
a sizable share of the variance of real energy prices at short and business cycle frequencies to
energy price shocks (see, e.g., Känzig and Williamson 2024).

Still, to rule out that our results are driven by energy price variations, here we orthogonalize
our two technology shocks with respect to fossil energy price shocks. Specifically, we rerun our
baseline VAR and recover a fossil energy price shock as an innovation that explains the maxi-
mum share of the variation in the real price of fossil fuels over business cycle frequencies from
six to 32 quarters. We then proceed by identifying the EST and NEST shocks by solving the
optimization problem (12), but with the additional restriction that both shocks are orthogonal
to the fossil energy price shock.

The results are presented in Online Appendix Figure A.3. Orthogonalizing the two tech-
nology shocks to a fossil fuel price shock, the IRFs and FEVDs associated with the two shocks
remain essentially unchanged. This shows that we are indeed picking up shocks to energy-
saving and other input-saving technologies which are not themselves driven by fossil fuel price
dynamics.

4.4.2 Using a Broad Measure of Energy Consumption

In our baseline analysis documented thus far, we have identified the EST and NEST shocks via
sign restrictions imposed on the intensity of fossil energy and its income share. This choice
follows the model of Hassler et al. (2021) and reflects the fact that the U.S. economy has
heavily relied on fossil fuels over the past decades. In this section, we provide a comparison to
a specification using a broad measure of end-use energy instead of fossil energy.

Specifically, we consider two changes to our baseline VAR. First, we include the intensity
of end-use energy, defined as the per output value of the sum of fossil, renewable and nuclear
energy minus electrical energy system losses. Second, we construct the income share using
the annual “Total end-use energy average price (TETXD)", retrieved from the State Energy
Data System (SEDS) database. We interpolate this annual end-use energy price to construct a
quarterly series using a random walk interpolator as in Stock and Watson (2020) and express it

9See, for example, Popp (2002), Aghion et al. (2016) and Brown et al. (2022).
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in real terms using the GDP deflator.10

We then repeat our identification exercise using these alternative variable definitions. We
first identify the two technology shocks as jointly explaining the bulk of the variation in end-use
energy intensity and TFP over frequencies of 80 quarters and longer. Second, we rotate these
shocks to satisfy the following sign restrictions: an EST shock is required to lower the intensity
of end-use energy as well as its income share for horizons 0 ≤ h ≤ 80, while a NEST shock is
required to raise TFP and the end-use energy income share over the same horizons.

Online Appendix Figure A.4 documents that the two identified shock series are highly cor-
related with the ones from our baseline identification. The IRFs and FEVDs are provided in
Figure A.5. They are essentially identical to those in our baseline analysis which we super-
impose. If anything, the differences between the EST and NEST shocks are somewhat more
pronounced when considering the income-share of end-use energy, the real end-use price of
energy, and end-use energy consumption instead of their fossil fuel counterparts. In sum, the
effects of energy-saving technology shocks that we highlight in our baseline results are not
specific to our reliance on fossil rather than overall end-use energy.

4.4.3 Alternative Specifications

We now present results from a battery of alternative robustness checks. We consider several
departures from the baseline analysis in terms of the values for the hyperparameters used in
the Bayesian estimation of the VAR, the horizon used for imposing sign restrictions, achiev-
ing identification by alternatively targeting a specific horizon in the time domain, and sample
periods.

Figure 9 shows the impulse responses and the variance contributions for the five main vari-
ables. As described in Section 3 and Online Appendix A, our baseline results make use of
the Minnesota prior with the hyperparameters set to γ1 = 0.2, γ2 = 0.5, γ3 = 2 and γ4 = 105

following Canova (2007). The first three robustness checks we compare our baseline results to
those obtained using alternative values for γ1, γ2 and γ3. The first assumes a looser γ1 (γ1 = 0.3,
γ2 = 0.5, γ3 = 2). The second takes a looser γ2, which represents the relative tightness of the
prior distribution for other variables (γ1 = 0.2, γ2 = 1, γ3 = 2). The third imposes γ3 = 1 and
thus reduces the relative tightness of the prior standard deviation for lags beyond one (γ1 = 0.2,
γ2 = 0.5, γ3 = 1).

The forth robustness analysis varies the horizons over which we impose sign restrictions
according to (13). Specifically, we decrease the number of quarters from 0 ≤ h ≤ 79 to 0 ≤ h ≤
39.

The fifth contrasts the shocks with those identified by maximizing the long-run variation
of fossil energy intensity and TFP in the time instead of the frequency domain. Here, we
follow Francis et al. (2014) and Kurmann and Sims (2021) and construct the innovations that

10In doing so, the annual observations are assumed to be averages of the four quarterly values, and quarterly
values are modeled as following a random walk with drift and are estimated using the Kalman smoother.
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explain the maximal share of the forecast error variances of the target variables at a long, but
finite horizon.11 Given the resulting long-run innovations, identification is then also achieved
by imposing the sign restrictions (13). We maximize the forecast error variance shares at a
horizon of 80 quarters as in Kurmann and Sims (2021) and impose the sign restrictions for
horizons of 0 ≤ h ≤ 39 quarters.

Our sixth robustness check studies whether our results are driven by the shale gas boom.
Specifically, we rerun our analysis for the subsample 1973:I-2005:IV. Acemoglu, Aghion, Bar-
rage and Hémous (2023), among others, document that natural gas increasingly replaced coal
in electricity production in the mid 2000s when the development of fracturing and horizontal
drilling led to a boom in shale gas production.

Ideally, we would also like to study the implications of EST and NEST shocks in the post-
2005 sample. However, since we identify innovations that maximize long-run variance shares,
we cannot meaningfully replicate our analysis for such a short sample. We therefore assess
the dynamic effects of the two shocks over different subsamples adopting the IV regression
approach of Stock and Watson (2012, 2018). We first recover the shock series for the full
sample from our baseline analysis and then use them as instruments for different subsamples
keeping the VAR coefficients constant. The seventh and eighth robustness checks perform this
analysis for the two subsamples 1973:I-2005:IV and 2006:I-2019:IV, respectively.

Figure 9 superimposes the IRFs (top panel) and FEVDs (bottom panel) for the eight dif-
ferent robustness analyses and also provides the posterior coverage intervals for the baseline
specification. Evidently, the basic character of the IRFs and FEVDs is robust to all of these
modifications. This gives us confidence in our main result: an energy-saving technology shock
is associated with a marked and persistent response of real economic activity as well as a pro-
nounced hump-shaped rebound of fossil fuel consumption and emissions.12

11This involves rewriting the optimization problem (12) to capture the variation of the variables at a fixed
horizon k̄. More concretely, let B[ j]

k denote the jth row of the kth lag matrix in B(L) such that B[ j]
k Qi is the

effect of shock i on variable j after k periods, and let Θ j,m
(
k̄
)
=

∑
k̄
k=0

(
B[ j]

k Qm

)2

∑
k̄
k=0 B[ j]

k B[ j]′
k

represent the share of fore-

cast error variance of variable j explained by shock m. The innovations are then constructed by solving
argmax

Q1 ,Q2

Θenergy intensity,1
(
k̄
)
+Θenergy intensity,2

(
k̄
)
+ΘTFP,1

(
k̄
)
+ΘTFP,2

(
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)

subject to the restrictions Q′
1Q1 = 1,

Q′
2Q2 = 1 and Q′

2Q1 = 0. This implies that Q1 and Q2 are the eigenvectors associated with the two largest eigen-

values of the matrix ∑
k̄
k=0 B[energy intensity]′
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k

∑
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+
∑
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∑
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.
12To conserve space, we only show the main five variables in this figure. We obtained similarly robust results

for the remaining eight variables in the VAR.
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5 Conclusion

In this paper, we disentangle energy-saving and non-energy-saving technology shocks using
identifying restrictions derived from state-of-the-art models of directed technical change. We
show that the identified EST shock series is correlated with subsequent growth in key measures
of energy innovations based on patents and public energy RD&D spending, corroborating our
identifying restrictions. Although the EST shock is associated with a persistent reduction of
fossil fuel intensity and thus also the carbon intensity of output, it leads to a rebound in fossil
fuel consumption and per capita emissions. The reason for this rebound effect is that output
and its components strongly and persistently increase following energy-saving technological
innovations.

We explore the economic underpinnings of the rebound effect by studying the breakdown of
U.S. emissions by source and sector. The EST shock is associated with a compositional change
from the direct consumption of fossil fuels towards electricity. Yet, the bulk of electricity
has been produced with fossil fuels in our sample from 1973 through 2019. As such, the
substitution of end-use fossil fuels by electricity did not come with a substantial reduction of
emissions in the short to medium-run. The rebound effect in emissions becomes smaller after
the mid 2000s when the shale gas boom increasingly replaced coal by natural gas in electricity
production.

While our results provide a coherent account of the dynamics of carbon emissions and out-
put in the U.S. over the past few decades, only a general equilibrium analysis can deliver robust
policy conclusions. That said, our findings can inform the debate about how the transition to a
net-zero carbon economy might be achieved. We have shown that in the past decades techno-
logical advances lowering the fossil fuel and carbon emission intensity of output have led to a
rebound in fossil fuel consumption and per capita carbon emissions. We also provide evidence
that this rebound is largely explained by a compositional change from end-use of fossil fuels
towards fossil fuels embodied in electricity production.

This evidence corroborates a key point emphasized in the IEA (2020)’s Sustainable De-
velopment Scenario: low-carbon electricity is likely to be the largest contributor to reaching
net-zero carbon emissions. While the electric power sector has heavily relied on fossil fuels
over the past decades, achieving net-zero would require a much higher share of low-carbon
electricity generation. Going forward, improvements in technology will thus likely have to go
hand in hand with policies or social norms affecting the supply of and demand for fossil fuels
to achieve a meaningful reduction of emissions. Our results also suggest that technological in-
novations leading to a more efficient use of fossil energy may have substantial positive effects
on economic growth.
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Figures

A. IRFS

B. FEVDS

Figure 1: IRFs and FEVDs for EST and NEST Shocks
Notes: The top panel shows the IRFs for the EST shock (green) and the NEST shock (brown) from the structural
VAR. The shocks are reported as one-standard-deviation impulses. The bottom panel displays the corresponding
FEVDs. The shaded bands correspond to the 16 to 84 percent posterior coverage intervals.
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Figure 2: FEVDs for EST and NEST Shocks Combined versus One Single Long-Run Shock
to TFP
Notes: This figure shows the posterior median forecast error variance shares explained by the EST shock (green
dash-dot), the NEST shock (brown stars), the EST and NEST shocks combined (red solid), and a single long-run
shock to TFP (black dashed) from the structural VAR.
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Figure 3: EST and NEST shock series versus k-year ahead growth of energy innovation indi-
cators
Notes: The top-left chart shows the median estimate of the shock series. Each bar represents the aggregate of
the quarterly median estimated shock series in the annual frequency, computed by averaging over four quarters
in each year. The remaining charts estimate the regression coefficient of k-year ahead growth of different energy
innovation indicators as the dependent variable (for k=2, 4, 6, 8 and 10 years) on a smoothed version of our shock
series which we constructed by running through an AR(1) filter with autoregressive coefficient of 0.9. The charts
also show the robust standard error bands for these estimates.
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Figure 4: Input-Saving Technologies, ε = 0.02
Notes: The green and brown lines depict the energy saving and capital/labor augmenting technology levels backed
out from the production function (1) closely following Hassler et al. (2021) (see Online Appendix B for details on
the construction of these technology series). Each series is normalized to 1 in 1973:I.
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Figure 5: Correlation among median estimate of shock series obtained from baseline analysis
and alternative approach using different target variables (A&Ae)
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A. IRFS

B. FEVDS

Figure 6: Different Target Variables (A&Ae): IRFs and FEVDs for EST and NEST Shocks
Notes: The top panel shows the IRFs for the EST shock (green) and the NEST shock (brown) from the structural
VAR. The shocks are reported as one-standard-deviation impulses. The bottom panel displays the corresponding
FEVDs. The shaded bands correspond to the 16 to 84 percent posterior coverage intervals.
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B. IRFS

Figure 7: Decomposition of Aggregate CO2 Emission Intensity, and IRFs for Corresponding
Components
Notes: The blue and purple lines depict the intensity of carbon emissions and end-use fossil fuel consumption per
unit of U.S. output in the top panel. The gap between these lines are captured by the product of the brown and
yellow lines which, respectively, reflect changes in the ratio of carbon emissions to total fossil fuel consumption
(which consists of fossil fuels consumed in end-use and electric power sectors) and the ratio of total fossil fuel
consumption to end use of fossil fuel. Each series is normalized to 1 in 1973:I. The bottom panel shows the IRFs
of the components for the EST shock (green) and the NEST shock (brown) from the structural VAR. The shocks
are reported as one-standard-deviation impulses. The shaded bands correspond to the 16 to 84 percent posterior
coverage intervals.
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A. DECOMPOSITION
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Figure 8: Decomposition of CO2 Emission per Capita by Sectors, and IRFs for Corresponding
Components
Notes: The blue and purple lines depict per capita values of carbon emissions and end-use fossil fuel consumption
both in aggregate and sector-level in the top panel. The gap between these lines are captured by the product of
the brown and yellow lines which, respectively, reflect changes in the ratio of carbon emissions to total fossil fuel
consumption (which consists of fossil fuels consumed in end-use and electric power sectors) and the ratio of total
fossil fuel consumption to end use of fossil fuel. Each series is normalized to 1 in 1973:I. The bottom panel shows
the IRFs of the components at the sectoral level for the EST shock (green) and the NEST shock (brown) from the
structural VAR. The shocks are reported as one-standard-deviation impulses. The shaded bands correspond to the
16 to 84 percent posterior coverage intervals.
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A. ROBUSTNESS: IRFS

B. ROBUSTNESS: FEVDS

Figure 9: Robustness: IRFs and FEVDs for EST and NEST Shocks
Notes: The baseline case uses the same sample period, Bayesian VAR specification and identification as in Fig-
ure 1.The other cases are different from the baseline as indicated. In three cases, we use alternative values for the
hyperparameters (see Online Appendix A for details on the Bayesian estimation). For the time-domain identifica-
tion, we alternatively identify two shocks explaining the maximum forecast error variance share of fossil energy
intensity and TFP at the 80-quarter horizon and satisfy sign restrictions up to 40 quarters ahead. For IV regressions
IRFs, we treat the shock series estimated over the full sample as instrument over two subsamples while keeping
the VAR coefficients unchanged.
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Online Appendix

In this appendix, we first describe the details of the Minnesota prior we used for Bayesian
estimation and inference in the VARs we estimate. We then describe the details on the public
energy RD&D budget measures and energy-saving technology series.

A Priors

Following a common convention in the literature on Bayesian VARs, we make use of the Min-
nesota prior, which is based on the belief that the univariate behavior of each time series variable
included in the VAR is well described by a random walk model. In particular, for a VAR model
of the form

Xt = c+A1Xt−1 + · · ·+ApXt−p +ηt ,

where Xt denotes an n×1 vector of quarterly time series, we use a representation for the prior
information that sets c = 0, A1 = In and A2 = A3 = ...= Ap−1 = 0.

Moreover, the Minnesota prior takes the following standard deviation for the prior distribu-
tion of a(s)i j

γ1

sγ3

when i = j, and

γ1γ2σ̂i

sγ3σ̂ j

when i ̸= j, and also takes the standard deviation γ4σ̂i for the constant term ci, where σ̂i is
estimated by the standard deviation of the residuals from the OLS regression of xit on a constant
and p of its own lags. Following Canova (2007), we set γ1 = 0.2, γ2 = 0.5, γ3 = 2 and γ4 = 105.

B Construction of Public Energy RD&D Budget Shares

The shares we use are defined as

GovTotalEnergyRDD_Sharet =
GovTotalEnergyRDDt

GovRDt
,

GovFossilEnergyRDD_Sharet =
GovFossilEnergyRDDt

GovRDt
,

where GovTotalEnergyRDDt , GovFossilEnergyRDDt and GovRDt respectively denote the gov-
ernment RD&D budget for all energy-related technologies, the government RD&D budget for
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Figure A.1: Annual Series of Public Energy RD&D Budget

the fossil fuel technologies, and the NIPA government R&D investment. GovTotalEnergyRDDt

is taken from the IEA Energy Technology RD&D Budgets database. We use “Group 2–Fossil
Fuels: Oil, Gas and Coal” from the same dataset for GovFossilEnergyRDDt . For GovRDt ,
we use “Government Gross Investment: Intellectual Property Products: Research and Devel-
opment (Y057RC1A027NBEA)”, retrieved from FRED, Federal Reserve Bank of St. Louis.
As described in the IEA’s database documentation, there has been a large increase in RD&D
spending associated with the American Recovery and Reinvestment Act of 2009. Since this is
a one-year appropriation and the following year sees a substantial decrease, we treat the 2009
observations as outliers and replace them with the median of the five preceding observations.
The series are plotted in Figure A.1.

C Construction of Input-Saving Technology Variables

Following Hassler et al. (2021), we use the production function (1) and data on output, in-
puts and their prices to back out the energy-saving technology level (Aet) and the capital/labor
augmenting technology level (At). To this end, under the assumption of perfect competition in
input markets, we solve for the two technology trends given a value of the substitution elasticity.
Letting lshare

t = wt lt/yt and eshare
t = ptet/yt , this yields

At =
yt

kα
t l1−α

t

[
lshare
t

(1−α)(1− γ)

] ε

ε−1

,

and

Aet =
yt

et

[
eshare

t
γ

] ε

ε−1

.

We keep the substitution elasticity equal to ε = 0.02 and set γ = 0.05 and α = 0.25/0.95 =

0.2632 as in Hassler et al. (2021). Here, et and pt correspond to fossil fuel consumption and a
composite index of real fossil fuel prices defined as
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et = ecoal
t + epetroleum

t + egas
t ,

pt =
pcoal

t ecoal
t + ppetroleum

t epetroleum
t + pgas

t egas
t

ecoal
t + epetroleum

t + egas
t

.

Monthly data on ei
t and pi

t for i ∈ {coal,petroleum,gas} for January 1973 to December
2019 are taken from the EIA. Specifically, we use consumption of coal, petroleum and natural
gas from Table 1.3 “Primary energy consumption by source”. We first seasonally adjust these
series using the X-12 method and then convert them to quarterly values by adding the monthly
values.13 We further use Table 9.9 “Cost of fossil-fuel receipts at electric generating plants”
to retrieve pi

t . These price series, measured in Dollars per million Btu (including taxes), are
deflated by the GDP deflator.

Quarterly data on total compensation of employees are taken from the BEA. This variable
is deflated by the GDP deflator. It is then used to computed the labor share of income as

lshare
t =

TotalEmployeeCompensationt
yt

.

For lt , we use “Employment Level (CE16OV)” , retrieved from FRED.
For kt , we use annual data on “Capital Stock at Constant National Prices for United States

(RKNANPUSA666NRUG)”, also obtained from FRED. We interpolate the annual capital stock
to construct a quarterly capital stock series using a random walk interpolator (see footnote 10).

Finally, we follow Hassler et al. (2021) and define output as

yt = GDPt −NetExportFuel
t ,

where

NetExportFuel
t = pcoal

t

(
Xcoal

t −Mcoal
t

)
+ ppetroleum

t

(
Xpetroleum

t −Mpetroleum
t

)
+ pgas

t
(
Xgas

t −Mgas
t
)
.

We use coal, petroleum and natural gas imports and exports from Tables 1.4a-b “Primary En-
ergy Imports by Source” and “Primary Energy Export by Source” from the EIA. These series
are originally available monthly. Similarly to the data on fossil fuel consumption, we first sea-
sonally adjust them and then convert them to the quarterly frequency by adding the monthly
values. This output series is in turn used in constructing the fossil energy income share. None

13The corresponding sectoral data used in Section 4.3.2 are taken from Tables 2.1a-b “Energy consumption:
Residential, commercial, and industrial sectors” and “Energy consumption: Transportation sector, total end-use
sectors, and electric power sector”.
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of the results change, however, if we use real GDP instead.

D Additional Figures

A. FEVDS FOR AGGREGATE EMISSION INTENSITY AND ITS COMPONENTS

B. FEVDS FOR SECTORAL EMISSIONS PER CAPITA AND THEIR COMPONENTS

Figure A.2: FEVDs for Carbon Emission Intensity, per Capita Emissions, and Corresponding
Components at Aggregate and Sector-Level
Notes:This figure shows the FEVDs for the EST shock (green) and the NEST shock (brown) from the structural
VAR. The shaded bands correspond to the 16 to 84 percent posterior coverage intervals.
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A. IRFS

B. FEVDS

Figure A.3: Orthogonalizing w.r.t. to an Energy Price Shock: IRFs and FEVDs for EST and
NEST Shocks
Notes: The top panel shows the IRFs for the EST shock (green), the NEST shock (brown), and the energy price
shock (blue) from the structural VAR. The energy price shock is identified as a shock that explains the bulk of the
volatility in the real fossil fuel price over the business-cycle frequencies (6-32 quarters). The shocks are reported
as one-standard-deviation impulses. The bottom panel displays the corresponding FEVDs. The shaded bands
correspond to the 16 to 84 percent posterior coverage intervals.
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Figure A.4: Correlation among median estimate of shock series obtained from baseline anal-
ysis using prices and consumption of fossil energy and extended analysis adding additionally
renewable and nuclear energy
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A. IRFS

B. FEVDS

Figure A.5: Adding Renewable and Nuclear Energy: IRFs and FEVDs for EST and NEST
Shocks
Notes: The top panel shows the IRFs for the EST shock (green) and the NEST shock (brown) from the structural
VAR. The shocks are reported as one-standard-deviation impulses. The bottom panel displays the corresponding
FEVDs. The shaded bands correspond to the 16 to 84 percent posterior coverage intervals.
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