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1. Introduction

Traditional models of the term structure decompose yields
into a set of latent factors. These models commonly provide a
good in-sample fit to the data (e.g. Nelson and Siegel (1987),
Knez et al. (1994) and Dai and Singleton (2000)) and can also be
used to predict interest rates out-of-sample (e.g. Duffee (2002)
and Diebold and Li (2006)). While providing a good statistical
fit, however, the economic meaning of such models is limited
since they disregard the relationships between macroeconomic
variables and interest rates. In this paper, I suggest a model which
has both economic appeal and superior predictive ability for yields
as compared to traditional approaches.

In a widely recognized paper, Ang and Piazzesi (2003) augment
a standard three-factor affine term structure model with two
macroeconomic factors that enter the model through a Taylor-
rule type of short rate equation. They find that the macro factors
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account for a large share of the variation in interest rates and also
improve yield forecasts. Inspired by this finding, a vivid literature
has emerged lately that explores different approaches to jointly
model the term structure and the macroeconomy. Examples for
such models are Hordahl et al. (2006), Diebold et al. (2006) and
Dewachter and Lyrio (2006). While these latter studies consistently
find that macroeconomic variables are useful for explaining and/or
forecasting government bond yields, they only exploit very small
macroeconomic information sets. Yet, by limiting the analysis
to only a few variables, other potentially useful macroeconomic
information is being neglected.!

This is particularly important for term structure modeling as a
recent literature argues that the central bank acts in a “data-rich
environment” (Bernanke and Boivin, 2003). This means that the
monetary policy authority bases its decisions upon a broad set of
conditioning information rather than only a few key aggregates.
Consistent with this argument, a number of studies have found
that factors which by construction summarize the comovement in

T Note that the macroeconomic factors in Ang and Piazzesi (2003) are the
principal components extracted from a group of four real and three nominal
variables, respectively. Accordingly, these authors employ a somewhat larger
macroeconomic information set than the other studies referred to above.
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a large number of macroeconomic time series help to explain and
forecast the evolution of short-term interest rates (e.g. Bernanke
and Boivin (2003), Giannone et al. (2004) and Favero et al. (2005)).
In related work, Bernanke et al. (2005) suggest to combine the
advantages of factor modeling and structural VAR analysis by
estimating a joint vector-autoregression of the short-term interest
rate and factors extracted from a large cross-section of macro
time series. They label this approach a “Factor-Augmented VAR”
(FAVAR) and use it to analyze the dynamics of the short rate and
the effects of monetary policy on a wide range of macroeconomic
variables.

In this paper, I take the approach of Bernanke et al. (2005) a
step further and employ the FAVAR model to study the dynamics
of the entire yield curve within an arbitrage-free model. Precisely,
I suggest a model that has the following structure. A Factor-
Augmented VAR is used to describe the dynamics of the short-term
interest rate conditional on a large macroeconomic information
set. Given the dynamics of the short rate, the term structure of
interest rates is then derived using parameter-restrictions implied
by no-arbitrage. In sum, my model is an affine term structure
model that has a Factor-Augmented VAR as the state equation, i.e.
the short rate and the common components of a large number of
macro time series represent the factors which drive the variation
of yields. I label this approach a No-Arbitrage Factor-Augmented
VAR.

Estimation of the model is in two steps. First, I extract common
factors from a large macroeconomic dataset using the method
suggested by Stock and Watson (2002a,b) and estimate the
parameters governing their joint dynamics with the monetary
policy instrument in a VAR. Second, I estimate a no-arbitrage
vector autoregression of yields on the exogenous pricing factors.
Specifically, I obtain the price of risk parameters by minimizing the
sum of squared fitting errors of the model following the nonlinear
least squares approach of Ang et al. (2006). Altogether, estimation
of the model is fast and it is thus particularly useful for recursive
out-of-sample forecasts.

The results of the paper can be summarized as follows. The
No-Arbitrage FAVAR model based on four macro factors and the
short rate fits the US yield curve well in-sample. More importantly,
the model shows a strikingly good ability to predict yields out-
of-sample. In a recursive out-of-sample forecast exercise, the No-
Arbitrage FAVAR model is found to provide superior forecasts
with respect to a number of benchmark models which have
previously been suggested in the literature. Except for extremely
short forecast horizons and very long maturities, the model
significantly outperforms the random walk, a standard three-
factor affine model, the model suggested by Bernanke et al.
(2004) which employs individual macroeconomic variables as
factors, and the model recently put forth by Diebold and Li
(2006) which has been documented to be particularly useful for
interest rate predictions. A subsample analysis reveals that the
No-Arbitrage Factor-Augmented VAR model performs particularly
well in periods when interest rates vary a lot.

The paper is structured as follows. In Section 2, the No-Arbitrage
Factor-Augmented VAR model is presented and its parametrization
discussed. Section 3 describes the estimation of the model. In
Section 4, I document the in-sample fit of the model and then
discuss the results of the out-of-sample forecasts in Section 5.
Section 6 concludes.

2. The model

Economists typically think of the economy as being affected
by monetary policy through the short term interest rate. At
the same time, the central bank is often assumed to set the
short rate as a function of the overall state of the economy,

characterized e.g. by the deviations of inflation and output
from their desired levels. Bernanke et al. (2005) point out that
theoretical macroeconomic aggregates as output and inflation
might not be perfectly observable neither to the policy-maker
nor to the econometrician. Instead, they argue that the observed
macroeconomic time series should be thought of as noisy measures
of economic concepts such as aggregate activity or inflation.
Accordingly, these concepts should be treated as unobservable in
empirical work so as to avoid confounding measurement error or
idiosyncratic dynamics with fundamental economic shocks.

Bernanke et al. (2005) therefore suggest to extract a few
common factors from a large number of macroeconomic time
series variables and to study the mutual dynamics of monetary
policy and the key economic aggregates by estimating a joint
VAR of the factors and the policy instrument, an approach which
they label “Factor-Augmented VAR” (FAVAR). This approach can
be summarized by the following equations:

Xe = ApF + Arre + € (M)

(ff) =pu+oW) <ff”) + . (2)
t t—1

X denotes a M x 1 vector of period-t observations of the observed
macroeconomic variables, Ar and A, arethe M x kand M x 1
matrices of factor loadings, r; denotes the short-term interest rate,
F; is the k x 1 vector of period-t observations of the common
factors, and e; is an M x 1 vector of idiosyncratic components.
Moreover, u = (M}, i) isa (k4 1) x 1 vector of constants, @ (L)
denotes the (k + 1) x (k + 1) matrix of order-p lag polynomials
and w; is a (k + 1) x 1 vector of reduced form shocks with
variance covariance matrix £2. Since affine term structure models
are commonly formulated in state-space from, I rewrite the FAVAR
inEq.(2)as

Ly =p+ PZ 1+ o, (3)

where Z, = (F, 1, F_q, 1e-1, s Ft/—p—H’ rt._p+1)’, and where
I, @,  and £2 denote the companion form equivalents of u, @, w,
and £2, respectively. Accordingly, the short rate r, can be expressed

in terms of Z; as r; = 8'Z; where 8" = (01xk, 1, O1x(k+1)(p—1))-

2.1. Adding the term structure

The term structure model which I suggest is built upon the
idea that the Federal Reserve bases its decisions on a large set of
conditioning information and that the dynamics of the short-term
interest rate are therefore well described by a Factor-Augmented
VAR. Accordingly, yields are driven by the policy instrument as
well as the main shocks hitting the economy which are proxied
by the factors that capture the bulk of common variation in a large
number of macroeconomic variables. I thus employ the FAVAR in
Eq. (3) as the state equation of my term structure model. To make
the model consistent with the assumption of no-arbitrage, I further
impose restrictions on the parameters governing the impact of the
state variables on the yields of different maturity. More precisely,
I model the nominal pricing kernel as

1 /
M1 = exp <—Tr - EAtQ)‘f - )\Zwt+l> s

1
= exp (-3/2[ - Exgmt - /\;wm) , (4)

where A, are the market prices of risk. Following Duffee (2002),
these are commonly assumed to be affine in the underlying state
variables Z, i.e.

At = ho + AZe. (5)
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In order to keep the model parsimonious, I restrict the prices of risk
to depend only on contemporaneous observations of the model
factors. In an arbitrage-free market, the price of a n-months to
maturity zero-coupon bond in period t must equal the expected
discounted value of the price of an (n — 1)-months to maturity
bond in period t + 1:

-1
P = Ed[Meyr PV
Assuming that yields are affine in the state variables, bond prices
P[(") are exponential linear functions of the state vector:

P = exp (An + B,Z) ,

where the scalar A, and the coefficient vector B, depend on the
time to maturity n. Following Ang and Piazzesi (2003), I show
in Appendix A that no-arbitrage is guaranteed by computing
coefficients A, and B, according to the following recursive
equations:

1
Ap = A + B;_1 (n — 2)o) + 53;_193,,,1, (6)

B, =B, ,(®—2xr)—3. (7)

Given the price of an n-months to maturity zero-coupon bond, the
corresponding yield is thus obtained as

@ log P"
Yt -
n
= ay + b;,Zts (8)

where a, = —Ap/nand b, = —B] /n.

Altogether, the suggested model is completely characterized by
Egs. (1), (3) and (6)—(8). In a nutshell, it is an essentially affine
term structure model that has a FAVAR as the state equation.
Accordingly, I will refer to my model as a “No-Arbitrage Factor-
Augmented VAR” approach.

3. Estimation of the model

In principle, the Factor-Augmented VAR model can be esti-
mated using the Kalman filter and maximum likelihood. However,
this approach becomes computationally infeasible when the num-
ber of macro variables stacked in the vector X is large. Bernanke
et al. (2005) therefore discuss two alternative estimation methods:
a single-step approach using Markov Chain Monte Carlo (MCMC)
methods, and a two-step approach in which first principal compo-
nents techniques are used to estimate the common factors F and
then the parameters governing the dynamics of the state equa-
tion are obtained via standard classical methods for VARs. Com-
paring both methods in the context of an analysis of the effects of
monetary policy shocks, Bernanke et al. (2005) find that the two-
step approach yields more plausible results. Another advantage of
this method is its computational simplicity. Since recursive out-of-
sample yield forecasts are the main focus of this paper, I therefore
employ the principal components based approach in my applica-
tion of the FAVAR model.

Accordingly, the common factors have to be extracted from the
panel of macro data prior to estimating the term structure model.
As in Bernanke et al. (2005), this is achieved using standard static
principal components following the approach suggested by Stock
and Watson (2002a,b). Precisely, let V denote the eigenvectors
corresponding to the k largest eigenvalues of the T x T cross-
sectional variance-covariance matrix XX’ of the data. Then, subject
to the normalization F'F /T = I, estimates F of the factors and A
the factor loadings are given by

F=+TV and
A=TXV,

i.e. the common factors are estimated as the eigenvectors
corresponding to the k largest eigenvalues of the variance-
covariance matrix XX’.2 In practice, the true number of common
factors which capture the common variation in the panel X is not
known. Bai and Ng (2002) have proposed some panel information
criteria which allow to consistently estimate the number of factors.
However, in the application of the FAVAR approach suggested
here, the number of factors that can feasibly be included in the
model is limited due to computational constraints imposed by the
market prices of risk. I therefore fix the number of factors instead
of applying formal model selection criteria.

Given the factor estimates, estimation of the term structure
model is performed using the consistent two-step approach of Ang
et al. (2006) which has also been employed in Bernanke et al.
(2004). First, estimates of the parameters (i, @, £2) governing the
dynamics of the model factors are obtained by running a VAR(p)
on the estimated factors and the short term interest rate. Second,
given the estimates from the first step, the parameters Ao and A4
which drive the evolution of the state prices of risk, are estimated
by minimizing the sum of squared fitting errors of the model. That
is, for a given set of parameter estimates (i, @, fZ), the model-
implied yields j/i”) = a, + IA)/nZ[ are computed and the sum S is
minimized with respect to A¢ and A where S is given by>

N
5= 3D 61—y ©

t=1 n=1

Due to the recursive formulation of the bond pricing parameters,
S is highly nonlinear in the underlying model parameters. It is
thus helpful to find good starting values so as to achieve fast
convergence. This is done as follows. I first estimate the parameters
Ao assuming that risk premia are constant but nonzero, i.e. I set to
zero all elements of the matrix A; which governs the time-varying
component of the market prices of risk. I then take these estimates
of Ag as starting values in a second step that allows for time-varying
market prices of risk, i.e. I let all elements of A and A be estimated
freely.

This two-step approach potentially gives rise to an errors-in-
variables bias since the estimation of the market price of risk
parameters takes as given the estimated evolution of the states. To
adjust for this bias, I compute standard errors for Aq and A; using
a Monte Carlo procedure which is described in Appendix B.

4. Empirical results

4.1. Data

[ estimate the model using the following data. The macroeco-
nomic factors are extracted from a dataset which contains about
160 monthly time series of various economic categories for the US.
Among others, it includes a large number of time series related

2To account for the fact that r is an observed factor which is assumed
unconditionally orthogonal to the unobserved factors F in the model (1), its effect
on the variables in X has to be isolated from the impact of the latent factors F. This is
achieved by regressing all variables in X onto r and extracting principal components
from the residuals of these regressions.

3 The assumption that only contemporaneous factor observations affect
the market prices of risk implies a set of zero restrictions on the pa-
rameters Ao and A;. In particular, 4y = (ig,olx(kﬂ)w,]))’ and Ay =

< A O(k+1)x (k+1)(p—1)
O+ (- x (k1) O+ 1) (p— 1) x (k+1)(p—1)
and X, isa (k4 1) x (k-+ 1) matrix. Hence, in practice only X0 and A need to be es-
timated. Bernanke et al. (2004) impose the same set of restrictions in the estimation
of their no-arbitrage macro VAR model.

) where X is of dimension (k + 1)
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to industrial production, more than 30 employment-related vari-
ables, around 30 price indices and various monetary aggregates.
It further contains different kinds of survey data, stock indices,
exchange rates etc. This dataset has been compiled by Giannone
et al. (2004) to forecast US output, inflation, and short term inter-
est rates. Notice that I exclude all interest rate related series from
the original panel used by Giannone et al. (2004). The reason is
that if the factors of my arbitrage-free model were extracted from
a dataset containing yields, restrictions would have to be imposed
on the factor loading parameters in (1) so as to make them con-
sistent with the assumption of no-arbitrage. This would imply a
non-trivial complication of the estimation process. Accordingly, |
exclude the interest rate related series and thus implicitly assume
that the central bank does not take into account the information
contained in yields when setting the short term rate. Notice also
that this assumption implies that long-term interest rates do not
affect the evolution of the macroeconomy in my model.#

The principal components estimation of the common factors in
large panels of time series requires stationarity. I therefore follow
Giannone et al. (2004) in applying different preadjustments to the
time series in the dataset.’ Finally, I standardize all series to have
mean zero and unit variance.

I use data on zero-coupon bond yields of maturities 1, 3, 6, and
9 months, as well as 1, 2, 3, 4, 5, 7, and 10 years. All interest rates
are continuously-compounded unsmoothed Fama-Bliss yields and
have been constructed from US treasury bonds using the method
outlined in Bliss (1997). I estimate and forecast the model over
the post-Volcker disinflation period, i.e. from 1983:01 to the last
available observation of the macro dataset, 2003:09.

4.2. Model specification

In the first step of the estimation procedure, I extract common
factors from the large panel of macroeconomic time series using
the principal components approach of Stock and Watson (2002a,b).
Together, the first 10 factors explain about 70% of the total variance
of all variables in the dataset. The largest contribution is accounted
for by the first four factors, however, which together explain about
50% of the total variation in the panel. Table 1 lists the shares of
variance explained by the first four factors as well as the time series
in the panel that each of them is most strongly correlated with.
Note, however, that the factors estimated by principal components
are only identified up to a non-singular rotation and therefore do
not have a structural economic interpretation.

As already discussed above, the number of factors that
can be included in the No-Arbitrage FAVAR model is limited
due to parameterization constraints imposed by the market
price of risk specification. Indeed, unless further restrictions are
imposed on the market prices of risk, the number of parameters
to estimate in the second step of the estimation procedure
increases quadratically with the number of factors. For the sake
of parsimony, I therefore restrict the number of factors to the
first four principal components extracted from the large panel
of monthly time series and the short rate. Unreported results
with smaller and larger number of factors have shown that
this specification seems to provide the best tradeoff between
estimability and model fit. A similar choice has to be made

4 As discussed in Rudebusch et al. (2006a), this assumption is consistent with
the predictions of standard New-Keynesian models in which aggregate output is
determined by a forward-looking IS curve and therefore only depends on expected
future short-term real interest rates.

5 Though with a slight difference as regards the treatment of price series: instead
of computing first differences of quarterly growth rates as in Giannone et al. (2004),
[ follow Ang and Piazzesi (2003) and compute annual inflation rates.

Table 1

Share of variance explained by factors and factor loadings

Factor 1 (25.1% of total variance) R?
Index of IP: Total 0.84
Index of IP: Non-energy, total (NAICS) 0.84
Index of IP: Mfg (SIC) 0.84
Capacity utilization: Total (NAICS) 0.81
Index of IP: Non-energy excl CCS (NAICS) 0.80
Factor 2 (10.9% of total variance)

CPI: All items less medical care 0.85
CPI: Commodities 0.83
CPI: All items (urban) 0.83
CPI: All items less shelter 0.82
CPI: All items ess food 0.79

Factor 3 (7.8% of total variance)

CPI: Medical care 0.66
PCE prices: Total excl food and energy 0.48
PCE prices: Services 0.45
M1 (in mil of current $) 0.39
Loans and Securities @ all comm banks: Securities, U.S. govt (in mil of §) 0.37

Factor 4 (5.0% of total variance)

Employment on nonag payrolls: Financial activities 0.27
Employment on nonag payrolls: Other services 0.23
Employment on nonag payrolls: Service-producing 0.19
Employment on nonag payrolls: Mining 0.18
Employment on nonag payrolls: Retail trade 0.17

This table summarizes R-squares of univariate regressions of the factors extracted
from the panel of macro variables on all individual variables. For each factor, I list
the five variables that are most highly correlated with it. Notice that the series have
been transformed to be stationary prior to extraction of the factors, i.e. for most
variables the regressions correspond to regressions on growth rates. The four factors
together explain about 50% of the total variation of the time series in the panel.

regarding the number of lags to include in the Factor-Augmented
VAR which represents the state equation of my term structure
model. Applying the Hannan-Quinn information criterion with a
maximum lag of 12 months indicates an optimal number of four
lags for the joint VAR of factors and the short rate. I therefore
employ this particular specification for the in-sample estimation
of the model. Note that in the recursive out-of-sample forecast
exercise documented in Section 5, the lag length of the FAVAR is
re-estimated each time a forecast is produced as it would have to
be in the context of truly real-time predictions.

4.3. Preliminary evidence

Before estimating the term structure model subject to no-
arbitrage restrictions, I run a set of preliminary regressions to
check whether the extracted macro factors are potentially useful
explanatory variables in a term structure model. First, I use
a simple encompassing test to assess whether a factor-based
policy reaction function provides a better explanation of monetary
policy decisions than a standard Taylor-rule based on individual
measures of output and inflation. I then perform unrestricted
regressions of yields on the model factors.

4.3.1. Do factors explain the short rate better than output and
inflation?

The use of the Factor-Augmented VAR as a model for the
dynamic evolution of short-term interest rates has been justified
with the argument that central banks base their monetary
policy decisions on large sets of macroeconomic conditioning
information rather than on individual measures of output and
inflation alone. Whether this conjecture holds true empirically
can be tested by comparing the fit of a standard Taylor-rule
with that of a policy reaction function based on dynamic factors.
Bernanke and Boivin (2003) present evidence in favor of this
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Table 2 Table 4
Policy rule based on individual variables Correlation of model factors and yields
& o by & y y© y12 (36) (60 (120)
—0.011 0.955 1.332 2.592 Panel A: Contemporaneous correlation of factors and yields
(0.078) (0.017) (0.627) (0.850) F1 0.243 0.318 0.351 0.382 0.389 0.379
This table reports estimates for a policy rule with partial adjustment based on F2 0.597 0.619 0.617 0.570 0.546 0.537
individual measures of output and inflation, i.e.; = ¢ + pr—; + (1 — p)(¢yy; + F3 0.150 0.153 0.161 0.270 0.340 0.407
¢ 1), where r denotes the federal funds rate, y the deviation of log GDP from F4 0.315 0.325 0.331 0.354 0.365 0.380
its trend, and 7 the annual rate of GDP inflation. The sample period is 1983:01 to y 1.000 0.987 0.975 0.936 0.899 0.833
2003:09. Standard errors are in parentheses. The R? of this regression is 0.967. - -

Panel B: Correlation of 1 month lagged factors and yields
Table 3 F1(—1) 0.296 0.365 0.393 0.409 0.409 0.393
Policy rule based on factors F2(—1) 0.600 0.614 0610 0.564 0539 0531

F3(—1) 0.145 0.152 0.161 0.269 0.342 0.411
c P Pr1 Pr2 Pr3 Pra F4(—1) 0.296 0.309 0316 0.346 0.358 0.373
0.198 0.957 0.115 0.076 —0.008 0.006 y(=1) 0.984 0.974 0.960 0923 0.888 0.822
(0.088) (0.016) (0.025) (0.031) (0.025) (0.026) Panel C: Correlation of 6 Months lagged factors and yields
This table reports estimates for a policy rule with partial adjustment based on the F1(—6) 0.445 0.490 0.502 0.473 0.445 0.412
four factors extracted from a large panel of macroeconomic variables, i.e. r; = F2(—6) 0.549 0535 0.521 0.496 0.479 0.470
€+ pre—1 + (1 = p)(Pr1F1e + @raF2¢ + dp3F3e + dpaF4r), where r again denotes g3 gy 0.128 0.151 0.171 0.286 0.364 0.453
the federal funds rate and F1 to F4 the four macro factors extracted from a panel of F4(—6) 0.285 0.308 0.318 0.343 0.351 0.342
about 160 monthly t_ime series for the US.ZThe sa_mple peri_od is 1983:01 to 2003:09. y(=6) 0.899 0.880 0.865 0.850 0.829 0.779
Standard errors are in parentheses. The R~ of this regression is 0.97.

Panel D: Correlation of 12 months Lagged Factors and Yields
claim by showing that the fitted value of the federal funds F1(—12) 0.548 0.567 0.564 0.502 0.455 0.390
rate from a factor-based policy reaction function is a significant ~ F2(~12) 0448 0405 0385 0398 0400 0.408
additional regressor in an otherwise standard Taylor-rule equation i) 0.145 0.186 0.205 0.303 0.378 .

alreg I y quation. g4 q9) 0275 0.309 0.329 0.349 0.354 0348

Alternatively, one can separately estimate the two competing Yy (=12) 0.742 0712 0.705 0.738 0.745 0723

policy reaction functions and then perform an encompassing test
a la Davidson and MacKinnon (1993). This is the strategy adopted
by Belviso and Milani (2005). I follow these authors and compare
a standard Taylor rule with partial adjustment,®

re=c¢+ pre—q + (1 — p) (@7 + OyYe),

to a policy reaction function based on the four factors which
represent state variables in the No-Arbitrage FAVAR model,

re=c+pre—1 + (1 - p)(f’[th-

The results from both regressions are summarized in Tables 2 and
3. As indicated by the regression Rs of 0.967 and 0.970, the factor-
based policy rule fits the data slightly better than the standard
Taylor rule.

The Davidson and MacKinnon (1993) encompassing test can be
used to asses whether this improvement in model fit is statistically
significant. Accordingly, I regress the federal funds rate onto the
fitted values from both alternative specifications which yields the
following result:

r = 0.2077 ™" 4 0.793 fFacters
= (0.186)  (0.186).

Hence, the coefficient on the standard Taylor rule is insignif-
icant whereas the coefficient on the factor-based fitted federal
funds rate is highly significant.” This result can be interpreted as
evidence supporting the hypothesis that the Fed reacts to a broad
macroeconomic information set.

6 Inflation 7 is defined as the annual growth rate of the GDP implicit price
deflator (GDPDEF). The output gap is measured as the percentage deviation of log
GDP (GDPC96) from its trend (computed using the Hodrick-Prescott filter and a
smoothing parameter of 14400). Both quarterly series have been obtained from
the St. Louis Fed website and interpolated to the monthly frequency using the
method described in Moench and Uhlig (2005). For the interpolation of GDP, I have
used industrial production (INDPRO), total civilian employment (CE160V) and real
disposable income (DSPIC96) as related monthly series. CPI and PPI finished goods
have been employed as related series for interpolating the GDP deflator.

7 Unreported results have shown that this finding is robust to alternative
specifications of both reaction functions using a larger number of lags of the policy
instrument and the macro variables or factors.

This table summarizes the correlation patterns between the yields and factors used
for estimating the term structure model. F1, F2, F3 and F4 denote the macro factors
extracted form the large panel of monthly economic time series for the US, y" to
y120) denote the yields of maturities 1-month to 10-years, respectively.

4.3.2. Unrestricted estimation of the term structure model

To get a first impression whether the factors extracted from
the panel of macro variables also capture predictive information
about interest rates of higher maturity, Table 4 summarizes the
correlations between the yields and various lags of the factors of
the No-Arbitrage FAVAR model. This table shows that the short rate
is most strongly correlated with yields of any other maturity. Yet,
the four macro factors extracted from the panel of monthly US time
series also exhibit considerable correlation with interest rates of
higher maturity. While the short rate is contemporaneously most
strongly correlated with yields, the correlations between macro
factors and yields tend to be higher for longer lags. This indicates
that the factors extracted from the panel of macro data might be
useful for forecasting interest rates.

To further explore the question whether the model factors
have explanatory power for yields, Table 5 provides estimates of
an unrestricted regression of yields of different maturities onto
a constant, the four macro factors and the 1-month Thill, i.e. it
estimates the pricing equation for yields,

Y. = A+ BZ + u,,

where no cross-equation restrictions are imposed on the coeffi-
cients A and B. The first observation to make is that the R? of these
regressions are all very high. Together with the short rate, the four
factors explain more than 95% of the variation in short yields, and
still more than 85% of the variation in longer yields. Not surpris-
ingly, the 1-month Thill is the most highly significant explanatory
variable for short maturity yields. However, in the presence of the
macro factors its impact decreases sharply towards the long end
of the maturity spectrum. This shows that the factors extracted
from the large panel of macro variables exhibit strong explanatory
power for longer yields and thus represent potentially useful state
variables in a term structure model.
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Table 5
Unrestricted regressions of yields on factors
y(G) y(12) y(36) y(60) y(120)
cst 0.65 1.04 2.29 3.18 4.58
[3.47] [3.58] [7.58] [10.65] [12.90]
F1 0.23 0.34 0.45 0.50 0.52
[5.23] [4.83] [6.21] [6.93] [7.25]
F2 0.19 0.26 0.26 0.30 0.45
[3.63] [2.81] [1.95] [2.12] [2.88]
F3 0.04 0.08 0.37 0.55 0.72
[1.43] [1.82] [4.93] [6.32] [6.10]
F4 0.10 0.15 0.26 0.33 0.44
[3.53] [3.01] [2.57] [2.75] [2.96]
y® 0.95 0.93 0.82 0.72 0.52
[28.64] [17.59] [11.71] [9.07] [5.57]
R? 0.98 0.97 0.93 0.91 0.86

This table summarizes the results of an unrestricted VAR of yields of different
maturities on the four macro factors extracted from the panel of economic time
series, and the short rate. The estimation period is 1983:01 to 2003:09. t-values are
in brackets.

4.4. Estimating the term structure model

4.4.1. In-sample fit

In this section, I report results obtained from estimating the
FAVAR model subject to the cross-equation restrictions (6) and
(7) implied by the no-arbitrage assumption. The model fits the
data surprisingly well, given that it does not involve any latent
yield curve factors as traditional affine models. Table 6 reports the
first and second moments of observed and model-implied yields.
These numbers show that on average the No-Arbitrage FAVAR
model provides a good fit to the yield curve. Fig. 1 provides a
visualization of this result by showing the close match between
average observed and model-implied yields across the entire
maturity spectrum. Notice that the model seems to be missing
some of the variation in longer maturities since the standard
deviations of fitted interest rates are somewhat lower than the
standard deviations of the observed yields, especially at the long
end of the curve. This can also be seen in Fig. 2 which plots the
time series for a selection of observed and model-implied yields.

Overall, the No-Arbitrage FAVAR model is able to capture the
cross-sectional variation of government bond yields quite well,
with a somewhat better in-sample fit at the short end of the
curve. As will be shown further below, this finding is paralleled
by the prediction results obtained from the model. In particular,
the forecast improvement of the No-Arbitrage FAVAR model over
latent yield factor based term structure models is found to be more
pronounced at the short than at the long end of the yield curve.

4.4.2. Parameter estimates
The two-step procedure used to estimate the model implies a
potential errors-in-variables bias since it takes as given the state

Average realized and fitted annualized yields 8301-0312
7.5 T T T
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Yields
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Fig. 1. Observed and model implied average yield curve. This figure plots average
observed yields against those implied by the No-Arbitrage FAVAR model.

evolution when estimating the market price of risk parameters. To
adjust for this bias, I compute standard errors for the market price
of risk parameters using a bootstrap procedure which is described
in Appendix B.

Table 7 reports the parameter estimates and associated
standard errors of the No-Arbitrage FAVAR model. The first
panel shows parameter estimates of the Factor-Augmented VAR
which represents the state equation of the model. The parameter
estimates and corresponding standard errors have been obtained
by standard OLS procedures. A noticeable feature of the FAVAR
estimates is that most of the off-diagonal elements of the lags of
the coefficient matrix @ are insignificant. Hence, in addition to
the unconditional orthogonality of the model factors that follows
from the estimation by principal components, there is also little
conditional correlation between the factors of the FAVAR model.

The second panel provides the estimates of the state prices of
risk which constitute the remaining components of the recursive
bond pricing parameters A and B. The estimates show that all
elements of the vector Ao governing the unconditional mean
of the market prices of risk are large in absolute terms. This
suggests that risk premia are characterized by an important
constant component. However, the standard errors implied by the
bootstrap algorithm are relatively large, so inference on the basis
of individual estimates should be exercised with caution. A similar
remark applies to the estimates of A; which govern the dynamic
component of the model-implied risk premia. While there are clear
signs for time variation in the market prices of risk, only few of the
estimated individual coefficients are statistically significant.

As has been noted in previous studies, it is difficult to pin
down the market price of risk parameters in affine term structure

Table 6
In-sample fit: Observed and model-implied yields

y(l) y(3) y(ﬁ) y(9) y(12) y(24) y(36) y(48) y(60) y(84) y(120)
Panel A: Mean
ym 5.22 5.47 5.62 5.74 5.89 6.27 6.55 6.78 6.90 7.14 7.27
o 5.22 5.47 561 5.76 5.88 6.27 6.56 6.77 6.91 7.14 7.26
ly™ — ™) 0.00 0.14 0.19 0.24 0.29 0.41 0.46 0.50 0.51 0.56 0.58
Panel B: Standard deviation
ym 2.11 2.20 2.25 229 2.32 2.33 227 224 221 2.14 2.06
o 2.12 2.19 2.25 228 2.29 227 221 2.16 2.12 2.04 1.92
ly® — 5™ 0.00 0.19 0.25 0.31 0.37 0.50 0.57 0.63 0.65 0.72 0.73

This table summarizes empirical means and standard deviations of observed and fitted yields. Yields are reported in percentage terms. The first and second row in each
panel report the respective moment of observed yields and fitted values implied by the No-Arbitrage FAVAR model while in the third row the mean and standard deviation

of absolute fitting errors are reported, respectively.
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Fig. 2. Observed and model-implied yields. This figure provides plots of observed and model-implied time series for four selected interest rates, the 6-month yield, the

12-month yield and the 3-and 10-year yields.

models.® The lack of statistical significance of individual elements
of Ao or A; found here is therefore not necessarily a sign of
poor model fit. Yet, economic reasoning based on the significance
of individual parameters governing the state prices of risk is
unwarranted. Instead, in order to visualize the relation between
risk premia and the model factors, Fig. 3 provides a plot of model-
implied term premia for the 1-year and the 5-year yield. As
indicated by these plots, term premia at the short end of the yield
curve are inversely related to the first macro factor which is itself
highly correlated with output variables. By contrast, premia for
longer yields are more closely related to the second factor which
is strongly correlated with inflation indicators.

Fig. 4 provides a plot of the loadings b, of the yields onto
the contemporaneous observations of the model factors. The
signs of these loadings are consistent with those obtained from
regressing yields onto the model factors without imposing no-
arbitrage restrictions, summarized in Table 5. By construction of
my arbitrage-free model, the loading of the 1-month yield onto
the short rate factor equals unity and those for the macro factors
are zero. However, the impact of the short rate on longer yields
sharply decreases with maturity. Hence, movements in the short-
term interest rate only have a relatively small impact on long-
term interest rates. Instead, these are more strongly driven by the

8 See e.g. Ang and Piazzesi (2003) or Hordahl et al. (2006).

Term premium on 1 year yield (dashed) vs F1 (solid)
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Fig. 3. Risk premia dynamics. This figure provides a plot of the term premia for

the 1-year and 5-year yield as implied by the No-Arbitrage FAVAR model. For

comparison, they are related to the first and second model factor, respectively.

macroeconomic factors. Most importantly, the first factor has an
equally strong impact on yields of medium and longer maturities.
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Table 7
Parameter estimates for no-arbitrage FAVAR model
D ()
F1 0.977 —0.057 —0.107 —0.103 0.011 0.244 —0.143 0.013 0.143 0.044
(0.096) (0.109) (0.118) (0.064) (0.061) (0.140) (0.180) (0.165) (0.088) (0.079)
F2 0.196 1.357 0.174 0.038 0.028 —0.055 —0.387 —0.306 0.005 0.086
(0.064) (0.073) (0.079) (0.043) (0.041) (0.094) (0.121) (0.111) (0.059) (0.053)
F3 —0.160 0.098 0.945 —0.042 —0.043 0.112 —0.340 —0.014 0.072 0.012
(0.072) (0.082) (0.088) (0.048) (0.046) (0.105) (0.135) (0.124) (0.066) (0.060)
F4 —0.102 —0.172 0.170 1.007 —0.071 —0.068 0.336 0.051 —0.192 —0.044
(0.123) (0.140) (0.151) (0.082) (0.079) (0.179) (0.231) (0.212) (0.112) (0.102)
y® 0.140 0.086 —0.045 —0.106 0.860 0.163 —0.057 —0.198 0.147 —0.042
(0.100) (0.113) (0.123) (0.066) (0.064) (0.146) (0.188) (0.173) (0.091) (0.083)
433 @4
F1 —0.621 0.057 —0.006 —0.089 0.045 0.315 0.079 0.145 0.072 —0.102
(0.139) (0.178) (0.165) (0.088) (0.079) (0.107) (0.107) (0.110) (0.061) (0.060)
F2 —-0.171 —0.049 0.257 —0.028 —0.071 0.084 0.045 —-0.117 —0.016 —0.040
(0.094) (0.120) (0.111) (0.059) (0.053) (0.072) (0.072) (0.074) (0.041) (0.040)
F3 0.013 0.314 —0.350 —0.012 0.039 —0.087 —0.040 0.334 0.041 —0.006
(0.104) (0.134) (0.124) (0.066) (0.059) (0.081) (0.081) (0.082) (0.046) (0.045)
F4 0.347 —0.358 —0.111 —0.259 0.091 —0.016 0.165 —0.030 0.293 0.040
(0.178) (0.228) (0.212) (0.113) (0.101) (0.138) (0.138) (0.141) (0.078) (0.077)
y® —0.124 0.135 0.293 —0.001 —0.060 —0.022 —0.045 —0.082 —0.005 0.187
(0.145) (0.186) (0.172) (0.092) (0.082) (0.112) (0.112) (0.114) (0.064) (0.063)
£2 |2
F1 0.100 0.013
(0.009) (0.084)
F2 —0.020 0.045 —0.003
(0.005) (0.004) (0.057)
F3 0.054 —0.013 0.057 —0.036
(0.006) (0.003) (0.005) (0.063)
F4 —0.072 —0.016 —0.044 0.165 —0.091
(0.010) (0.006) (0.007) (0.015) (0.108)
y® 0.006 —0.003 —0.005 —0.018 0.109 0.246
(0.007) (0.005) (0.005) (0.009) (0.010) (0.088)
The market prices of risk specification is Ay = Ag + A1Z;
—26.366 0.631 0.215 0.288 3.386 —0.084
(29.514) (1.806) (0.920) (1.325) (1.416) (0.544)
—10.220 4.673 0.338 0.870 —1.310 0.025
(139.011) (5.064) (3.363) (3.461) (3.302) (1.772)
—88.111 —0.635 —0.982 —0.164 —4.116 0.304
(51.118) (2.600) (1.559) (1.580) (1.675) (0.771)
—76.189 —1.612 —1.775 0.256 0.405 0.254
(48.143) (2.119) (1.184) (1.481) (1.464) (0.652)
—18.664 —0.208 —0.648 —0.044 —0.800 —0.246
(12.770) (0.795) (0.658) (0.626) (0.604) (0.411)

This table provides estimates of the parameters of the FAVAR model obtained using the full sample information, i.e. from estimating the model over the 1983:01-2003:09
period. The state dynamics are given by Z; = u + ®1Z;_1 + - - PsZ;_4 + w;, where E[wrw,] = £2.The states (F1...F4) of the model have been extracted from the large

panel of macro time series using principal components methods.

Interestingly, shocks to the third macro factor appear to have a
negative effect on yields of very short maturity and an increasingly
strong positive impact on medium-term and long-term rates. This
indicates that negative shocks to the third macro factor imply a
flattening of the yield curve which is commonly associated with
an upcoming recession.

4.5. How are the macro factors related to the components of the yield
curve?

In traditional term structure analysis, the yield curve is often
decomposed into three factors which together explain almost all
of the cross-sectional variation of interest rates. According to their
impact on the shape of the term structure, these components
are commonly labeled level, slope, and curvature. Since the No-
Arbitrage FAVAR model has been shown to explain yields relatively
well in-sample, it is interesting to relate the macro factors used
in the model to the level, slope, and curvature components of
the yield curve. In this section, I thus regress estimates of the

latent yield factors onto the macro factors and the short rate. The
yield factors are computed as the first three principal components
of the interest rates used to estimate the term structure model.
Consistent with results reported in previous studies, these explain
about 90.8%, 6.4% and 1.6% of the total variance of all yields.

Table 8 summarizes the results of these regressions. The four
macro factors and the short-term interest rate explain almost
all of the variation in the yield level which captures the most
important source of common variation of interest rates. The main
contribution comes from the short rate and the first and third
macro factor which are correlated with output and inflation-
related variables, respectively. Almost 80% of the variation in the
slope of the yield curve is explained by the factors of the FAVAR
model. Again, the short rate as well as the first and third macro
factors are most strongly correlated with the slope. The short rate
has a strongly significant negative coefficient in the slope equation
which is consistent with the common view that short rate increases
lead to a diminishing yield curve slope. Finally note that only
about 35% of the variation in the curvature of the yield curve are
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Fig. 4. Implied yield loadings. This figure provides a plot of the yield loadings b,
implied by the No-Arbitrage FAVAR model. The coefficients can be interpreted as
the response of the n-month yield to a contemporary shock to the respective factor.

Table 8
Regression of latent yield factors on the model factors
Level Slope Curvature
cst 0.23 1.65 —0.05
[10.88] [9.40] [=0.11]
F1 0.04 0.13 —0.37
[7.15] [4.18] [—3.91]
F2 0.03 0.10 —0.13
[2.76] [1.48] [—0.96]
F3 0.04 0.30 0.02
[5.89] [6.23] [0.30]
F4 0.02 0.14 —0.09
[2.92] [2.44] [—1.26]
y® 0.07 —0.29 0.02
[13.41] [—7.22] [0.33]
R? 0.95 0.77 0.35

This table summarizes the results obtained from a regression of level, slope, and
curvature yield factors onto the factors of the FAVAR model. Level, slope, and
curvature are computed as the first three principal components extracted from the
yields used to estimate the term structure model. They explain 90.8%, 6.4% and 1.6%
of the total variance of all yields, respectively. The sample period is 1983:01-2003:9.
t-statistics are in brackets.

explained by the macro factors. Hence, variations in the relative
size of short, medium and long-term yields seem to be the least
related to changes in macroeconomic conditions.

5. Out-of-sample forecasts

The term structure model suggested in this paper is based on
the idea that the Federal Reserve uses a large set of conditioning
information when setting short-term interest rates and that the
FAVAR approach suggested by Bernanke et al. (2005) represents
a useful way of capturing this information. While the model
can in principle be employed to analyze e.g. the macroeconomic
underpinnings of yield curve dynamics, this paper focuses on the
usefulness of the No-Arbitrage FAVAR model for predicting the
term structure of interest rates.

In the previous section, it has been shown that the model
provides a reasonably good in-sample fit to US yield data. In
this section, I study the forecast performance of the No-Arbitrage
FAVAR model in a recursive out-of-sample prediction exercise.
Before documenting the results of the forecasts, I briefly describe
how they are computed for the different models studied in this
paper. I start with the No-Arbitrage FAVAR model for which model-
implied forecasts are obtained according to

j\/g—)h\t = Gy + b Zene. (10)

where Z contains the contemporaneous and lagged observations of
the four factors (F1, F2, F3, F4) explaining the bulk of variation in
the panel of monthly time series for the US and the 1-month yield,
yV. The four factors are re-estimated via principal components
each period t a forecast is produced using data up to t. The
coefficients a, and Bn are computed according to equations (6) and
(7), using as input the estimates f, @, and £2 obtained by running
a VAR on the states, as well as the estimates ):0 and i1 that result
from minimizing the sum of squared fitting errors of the model.
Forecasts th are obtained by iterating forward the FAVAR Eq.
(2),i.e.

h—1

~ ~h ~in

Zep =970+ ) ¥ (11)
i=0

Note that the number of lags which enter the FAVAR equation are
re-estimated every period a forecast is made on the basis of the
Hannan-Quinn criterion with a maximum lag length of 12 months.

5.1. The competitor models

I compare the model’s forecast performance to that of several
competitor models. In particular, these are a No-Arbitrage Macro
VAR model, an unrestricted VAR on yield levels, two different
specifications of the Nelson-Siegel (1987) three-factor model
recently suggested by Diebold and Li (2006), an essentially affine
latent yield factor model following Duffee (2002), a simple AR(p)
on yield levels, and the random walk. The Nelson-Siegel (1987)
model is expected to be the most challenging competitor as
Diebold and Li have shown that it outperforms a variety of
alternative yield forecasting models. In the following, I briefly
sketch the individual competitor forecasting models.

5.1.1. No-Arbitrage macro VAR model

In order to analyze whether the forecast performance of the
No-Arbitrage FAVAR model can be attributed to the large set of
conditioning information incorporated by the model, [ compare it
to a model that uses as state variables individual macroeconomic
indicators. In particular, I compare it to a model that incorporates
as states the short rate and four macroeconomic variables which
are likely to contain information useful to explain yields.

Such a model has been suggested by Bernanke et al. (2004). In
addition to the federal funds rate, these authors use the following
four variables as states in their term structure model: a measure
of the employment gap (payroll employment detrended by a
Hodrick-Prescott filter); inflation over the past year, as measured
by the deflator for personal consumption expenditures excluding
food and energy; expected inflation over the subsequent year,
taken from the Blue Chip survey where inflation is defined in terms
of the GDP deflator, and the year-ahead Eurodollar futures rate to
capture the expected path of monetary policy over the near-term.

Bernanke et al. (2004) report that their model explains the
term structure well over time. This result is confirmed by
Rudebusch et al. (2006b) who find that the model even provides
a better fit to the cross-section of yields than originally described
by Bernanke et al. (2004). However, neither of both studies
investigates the forecast performance of the model. Here, I assess
the model’s ability to predict the yield curve out-of-sample in
a recursive pseudo real-time setting. Precisely, I obtain yield
forecasts according to
y§n+)h|r =an+ b;lzyfflf\t
where ZVAR = (Emp, 7, ¢, ED, V) contains the cyclical compo-
nent of payroll employment, PCE inflation, the Blue-Chip survey
measure of expected inflation, the year-ahead Eurodollar futures
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rate, and the 1-month yield. The coefficients a, and Bn are ob-
tained from Egs. (6) and (7) and guarantee the absence of arbi-
trage opportunities. Estimates of the model parameters based on
the entire sample 1983:01-2003:09 are provided in Appendix C.
Forecasts 22’_C,flt are computed as in (11). As for the No-Arbitrage
FAVAR model, the lag order of the VAR is re-estimated on the basis
of the Hannan-Quinn criterion with a maximum lag length of 12
months every period a forecast is made. The No-Arbitrage Macro
VAR model of Bernanke et al. (2004) is denoted “BRS” in the tables
below.

5.1.2. VAR(1) on yield levels
In this model, forecasts of yields are obtained according to

Vehe =€+ fJ/ta

where ¢ and " are estimated by regressing the vector y, onto
a constant and its h-months lag. This model is referred to as
“VARylds” in the results below.

5.1.3. Diebold-Li specification of the Nelson-Siegel model

In a recent paper, Diebold and Li (2006) have suggested a dy-
namic version of the traditional Nelson-Siegel (1987) decompo-
sition of yields and have shown that this model provides superior
yield forecasts with respect to a number of benchmark approaches.
According to this model, yields are decomposed into three factors
with loadings given by exponential functions of the time to matu-
rity n and some shape parameter t. Precisely, Diebold and Li sug-
gest to obtain yield forecasts according to

~(n) P> P> 1—e™
Yigne = Bi,thie + Boevhie o

N 1—e™ ™ _
P CELS

™
where
Bt+h\t =C + th
Diebold and Li (2006) obtain initial estimates of the factors 8 by
- mo_ e—m))

regressing yields onto the loadings (1, (1’; ), (1757

for a fixed value of t. They set T = 0.0609 which is the value
that maximizes the curvature loading at the maturity of 30 months.
Diebold and Li consider two different specifications of their model,
one where the factor dynamics are estimated by fitting AR(1)
processes and another where the factors follow a VAR(1). In my
application of their model, I report results for both specifications.
These are denoted as “NS(AR)” and “NS(VAR)”, respectively.

5.1.4. Essentially affine latent yield factor model Aq(3)

This is a traditional affine model where all the factors are latent
and have to be estimated from the yield data. I implement the
preferred essentially affine Aq(3) specification of Duffee (2002)
who has shown that this model provides superior out-of-sample
forecast results with respect to various other affine specifications.
The specification of the market prices of risk is therefore similar
to the No-Arbitrage FAVAR model. Within the Ay(3) model, yield
forecasts are obtained as

s) a7 5A03)
Vitpe = 0n + b;th,m
where Z%®) is composed of three latent yield factors, backed out
from the yields using the method by Chen and Scott (1993). In
particular, I assume that the 1-month, 1-year and 10-year yield
are observed without error. Moreover, the transition matrix ¢

in the state equation is assumed to be lower-triangular and the
variance-covariance matrix £2 to be an identity matrix so as to

ensure exact identification of the model (see Dai and Singleton
(2000)). Notice that since the latent factors need to be backed out
from the yields, estimation of the model takes considerably longer
than estimation of the No-Arbitrage FAVAR and Macro VAR models
where the parameters of the state equation are estimated in a first
stage of the estimation via OLS.

5.1.5. AR(p) on yield levels

Simple autoregressive processes constitute another natural
benchmark for modeling the time variation of bond yields.
Assuming that the yield of maturity n follows a p-th order
autoregression, its h-step ahead forecast is given by

s~ ~ () )
Yithe = Q0+ Q1Y pqe + o+ Y e

where 5 = y® fort < t.
In the implementation of this model, the lag order p is estimated
recursively using the BIC information criterion.

5.1.6. Random walk

Finally, many previous studies have suggested that the
evolution of interest rates might be well described by random
walk processes. The random walk therefore remains a common
benchmark for interest rate prediction models and is also used as a
competitor here. Assuming a random walk model for interest rates
implies a simple no-change forecast of individual yields. Hence, in
this model the h-months ahead prediction of an n-maturity bond
yield in period ¢ is simply given by its time t observation:

am ()
Yesne =Y -

5.2. Out-of-sample forecast results

The out-of-sample forecasts are carried out over the time
interval 1994:01-2003:09. The forecast sample therefore covers a
period of almost ten years. The affine models are first estimated
over the period 1983:01-1993:12 to obtain starting values for the
parameters. All models are then re-estimated recursively using
data from 1983:01 to the time that the forecast is made, beginning
in 1994:01.

Table 9 summarizes the root mean squared errors obtained
from these forecasts. Three main observations can be made.
First, the No-Arbitrage FAVAR model clearly outperforms the No-
Arbitrage Macro VAR of Bernanke et al. (2004) for most maturities
and especially in forecasts 6-months and 12-months ahead. This
implies strong support for the use of a broad macroeconomic
information set when forecasting the yield curve based on
macroeconomic variables. Second, at the 1-month ahead horizon,
the VAR(1) in yield levels and the AR(p) model outperform the
macro-based FAVAR and VAR models for yields of all maturities,
with the AR(p) being slightly superior for intermediate and long
yields and the VARylds model performing best for the short
rate. Third and most importantly, however, the No-Arbitrage
FAVAR model dominates all considered benchmark models in yield
forecasts 6-months and 12-months ahead. Indeed, as panels B and
C of Table 9 document, the FAVAR model implies smaller out-of-
sample root mean squared forecast errors than the benchmark
models except for the 10-year yield that is best predicted by the
affine latent yield factor model.

Interestingly, both specifications of the Nelson-Siegel model
considered in Diebold and Li (2006) are outperformed by the
No-Arbitrage FAVAR model. This result is striking since Diebold
and Li have documented their approach to be particularly good
at forecasting. This indicates that the combination of a large
information set, the rich dynamics of the FAVAR, and the parameter
restrictions implied by no-arbitrage together result in a model
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Table 9
Out-of-sample RMSEs—Forecast period 1994:01-2003:09
ym FAVAR BRS VARylds NS(VAR) NS(AR) Ao(3) AR(p) RW
Panel A: 1-month ahead forecasts
1 0.534 0.331 0.249 0.262 0.275 0.681 0.305 0.305
6 0.502 0.522 0.204 0218 0.256 0.216 0.204 0.222
12 0.516 0.553 0.250 0.268 0.293 0.300 0.256 0.259
36 0.630 0.485 0.308 0.313 0.312 0.386 0.299 0.309
60 0.685 0.467 0.314 0.316 0.316 0.357 0.303 0.307
120 0.717 0.511 0.293 0.289 0.289 0.289 0.279 0.282
Panel B: 6-month ahead forecasts
1 0.601 0.854 0.779 0.745 0.838 1.189 0.860 0.856
6 0.608 1.094 0.904 0.871 0.931 0.977 0.824 0.853
12 0.696 1.170 1.006 0.958 0.981 1.059 0.885 0.876
36 0.756 1.073 1.021 0.958 0.922 0.962 0.897 0.873
60 0.794 0.930 0.969 0.915 0.870 0.848 0.847 0.830
120 0.825 0.773 0.872 0.764 0.720 0.671 0.702 0.696
Panel C: 12-month ahead forecasts
1 0.919 1539 1.366 1.448 1.357 1.741 1.397 1.395
6 0.981 1.723 1.613 1.569 1.458 1.487 1.400 1.417
12 1.055 1.729 1.728 1.633 1.495 1.506 1.407 1.391
36 1.066 1.473 1.599 1.504 1.349 1.264 1.253 1.236
60 1.063 1.210 1.464 1.359 1.233 1.076 1.132 1.138
120 1.071 0.932 1.313 1.108 1.022 0.853 0.917 0.942

This table summarizes the root mean squared errors obtained from out-of-sample yield forecasts. The models have been estimated using data from 1983:01 until the period
when the forecast is made. The forecasting period is 1994:01-2003:09. “FAVAR” refers to the No-Arbitrage Factor-Augmented VAR model; “BRS” denotes the arbitrage-free
Macro VAR model of Bernanke et al. (2004); “VARylds” refers to an unrestricted VAR(1) on yield levels; “NS(VAR)” and “NS(AR)” denote the Diebold-Li (2006) version of the
three-factor Nelson-Siegel model with VAR and AR factor dynamics, respectively; “Ag(3)” refers to the essentially affine latent yield factor model of Duffee (2002); “AR(p)”

denotes an AR model where the lag order p is recursively estimated; “RW” refers to the random walk forecast.

Table 10
RMSEs relative to random walk—Forecast period 1994:01-2003:09
ym FAVAR BRS VARylds NS(VAR) NS(AR) Ao(3) AR(p)
Panel A: 1-month ahead forecasts
1 1.751 1.085 0.816 0.859 0.900 2232 1.000
6 2.266 2.355 0.921 0.984 1.154 0.972 0.918
12 1.993 2.135 0.964 1.034 1.131 1.160 0.987
36 2.039 1.571 0.996 1.013 1.011 1.250 0.969
60 2232 1.522 1.022 1.029 1.031 1.165 0.988
120 2.547 1.815 1.039 1.028 1.025 1.027 0.989
Panel B: 6-month ahead forecasts
1 0.702 0.997 0.910 0.870 0.979 1.389 1.004
6 0.712 1.283 1.059 1.022 1.092 1.145 0.966
12 0.795 1.336 1.148 1.094 1.119 1.209 1.010
36 0.866 1.229 1.171 1.098 1.056 1.103 1.028
60 0.956 1.121 1.167 1.102 1.048 1.022 1.021
120 1.186 1.112 1.254 1.099 1.035 0.964 1.010
Panel C: 12-month ahead forecasts
1 0.659 1.103 0.979 1.038 0.973 1.249 1.002
6 0.692 1.216 1.139 1.107 1.029 1.049 0.988
12 0.759 1.243 1.242 1.174 1.075 1.083 1.012
36 0.863 1.192 1.293 1.217 1.091 1.023 1.014
60 0.934 1.063 1.287 1.194 1.084 0.946 0.995
120 1.136 0.989 1.393 1.175 1.085 0.905 0.973

This table summarizes the root mean squared errors relative to those implied by the random walk. The models have been estimated using data from 1983:01 until the period
when the forecast is made. The forecasting period is 1994:01-2003:09. “FAVAR” refers to the No-Arbitrage Factor-Augmented VAR model; “BRS” denotes the arbitrage-free
Macro VAR model of Bernanke et al. (2004); “VARylds” refers to an unrestricted VAR(1) on yield levels; “NS(VAR)” and “NS(AR)” denote the Diebold-Li (2006) version of the
three-factor Nelson-Siegel model with VAR and AR factor dynamics, respectively; “A(3)” refers to the essentially affine latent yield factor model of Duffee (2002); “AR(p)”
denotes an AR model where the lag order p is recursively estimated; “RW"” refers to the random walk forecast.

which is particularly useful for out-of-sample predictions. In the
subsample analysis carried out in the next section, I will analyze
this result in more detail.

Table 10 reports RMSEs of all considered models relative to the
random walk forecast. These results show that the improvement in
terms of root mean squared forecast errors implied by the FAVAR
model is particularly pronounced for short and medium term ma-
turities. At the one-month forecast horizon, all yield-based models
outperform the affine models based on macro variables. However,

at forecast horizons beyond one month, the No-Arbitrage FAVAR
model outperforms all other models for maturities from one month
to five years. Relative to the random walk, the suggested model re-
duces root mean squared forecast errors up to 35% at the short end
of the yield curve and improves forecasts of medium-term yields
up to 15%. While all considered competitor models outperform the
random walk in 6-months and 12-months ahead forecasts only for
some maturities, the No-Arbitrage FAVAR model consistently out-
performs the Random Walk except for the 10-year yield.
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Table 11
White’s reality check test—Forecast period 1994:01-2003:09
ym™ BRS VARylds NS(VAR) NS(AR) Av(3) AR(p) RW
Panel A: 1-month ahead forecasts
1 1.881 2.390 2.315 2.241 —1.915 2.055 2.057
6 —0.201 2.274 2.212 2.019 2.222 2.277 2.195
12 —0.388 2214 2.115 1.963 1.916 2.180 2.164
36 1.798 3.298 3.266 3.266 2.719 3.349 3.293
60 2.774 4.055 4.041 4.032 3.745 4.116 4.101
120 2.797 4.693 4716 4720 4716 4.766 4761
Panel B: 6-month ahead forecasts
1 —3.966 —2.727 —2.062 —3.581 —11.050 —4.024 —3.946
6 —8.916 —4.883 —4.268 —5.311 —6.266 —3.365 —3.943
12 —9.525 —5.788 —4.823 —5.148 —6.892 —3.337 —3.223
36 —6.324 —5.235 —3.936 —3.073 —3.974 —2.774 —-2.314
60 —2.608 —3.524 —2.448 —1.489 —1.186 —1.260 —0.878
120 0.816 —1.051 0.756 1.546 2.246 1.693 1.862
Panel C: 12-month ahead forecasts
1 —-15.919 —10.630 —12.891 —10.170 —22.505 —11.589 —11.504
6 —21.081 —17.180 —15.790 —12.063 —13.331 —10.608 —11.404
12 —19.634 —19.526 —16.494 —11.750 —12.519 —9.291 —9.248
36 —11.096 —14.876 —12.092 —7.259 —5.390 —5.132 —4.821
60 —3.814 —10.630 —17.755 —4.200 —0.770 —2.314 —2214
120 2.625 —6.008 -1.121 0915 4.040 2.502 2.348

This table summarizes “White’s Reality Check” test statistics based on a squared forecast error loss function. I choose the No-Arbitrage FAVAR model as the benchmark model
and compare it bilaterally with the competitor models. Negative test statistics indicate that the average squared forecast loss of the FAVAR model is smaller than that of the
respective competitor model. Bold figures indicate significance which is checked by comparing the average forecast loss differential with the 5% percentile of the empirical
distribution of the loss differential series approximated by applying a block bootstrap with 1000 resamples and a smoothing parameter of 1/12.

One can formally assess whether the improvement of the
FAVAR model over the benchmark models in terms of forecast
error is significant by applying White’s (2000) “reality check” test.
This test uses bootstrap resamples of the forecast error series to
derive the empirical distribution of the forecast loss differential of
a model with respect to some benchmark model. It can thus be
employed to evaluate the superior predictive ability of a model
as compared to one or more competitor models. Here, I test
whether the No-Arbitrage FAVAR model has superior predictive
accuracy with respect to the seven considered competitors. The
test statistics are reported in Table 11. Negative numbers indicate
that the average squared forecast loss of the No-Arbitrage FAVAR
model is smaller than that of the respective competitor model
while positive test statistics indicate the opposite. I perform 1000
block-bootstrap resamples from the prediction error series to
compute the significance of the forecast improvement at the 5%
level which are indicated by bold figures. As the results in panels
B and C of Table 11 show, the documented improvement in terms
of root mean squared forecast errors is significant at the 5% level
for all but very long maturities at forecast horizons of 6-months
and 12-months ahead. This underscores the observation made
above that the No-Arbitrage FAVAR model predicts interest rates
considerably better than all studied competitor models, including
the Nelson-Siegel model and the Ay (3) model.

5.3. Subsample analysis of forecast performance

The results documented in the previous section show that the
No-Arbitrage FAVAR model exhibits strong relative advantages
over a variety of benchmark models which have been documented
powerful tools in forecasting the yield curve. This result somewhat
challenges the recent findings of Diebold and Li (2006) and
therefore a closer look at the predictive ability of the different
models is warranted. In this section, I thus perform a subsample
analysis of the out-of-sample prediction results. In particular, I
analyze the relative performance of the No-Arbitrage FAVAR model
with respect to the Nelson-Siegel model over exactly the sample
period that has been studied by Diebold and Li (2006).

Table 12 provides the root mean squared forecast errors of
the different models for the out-of-sample prediction period
1994:01-2000:12. At the 1-month ahead horizon, both specifica-
tions of the Nelson-Siegel model outperform the other models
except for the AR(p) model and the random walk which predict
maturities from 6 months to 5-years better. The absolute size of
the RMSEs is very similar to those documented by Diebold and Li
(2006). For example, based on the NS(AR) model Diebold and Li re-
port RMSEs of 0.236, 0.292, and 0.260 for the 1-year, 5-year and
10-year yields at the 1-month ahead horizon whereas I find values
of 0.249, 0.280, and 0.249, respectively, for the same maturities.
The small deviations are likely due to differences in the choice of
data and the set of maturities used to estimate the models. Turning
to the results for 6-months ahead predictions, the picture becomes
less favorable for the Nelson-Siegel model. Only for the 1-month
yield, the VAR specification of the Nelson-Siegel model performs
best. In contrast, the No-Arbitrage FAVAR model outperforms all
other models for the range of maturities between 6-months and
5-years. Again, the absolute size of the RMSEs found here is very
similar to those reported by Diebold and Li. For example, while
these authors document RMSEs of 0.669, 0.777, and 0.721 for the
1-year, 5-year and 10-year yields, I find values of 0.711, 0.764, and
0.694, respectively. The results again change somewhat if one con-
siders 12-months ahead predictions for the sample period studied
in Diebold and Li (2006). In this case, there appears to be a clearer
advantage of their preferred NS(AR) specification which outper-
forms all other models except for the 10-year maturity.

To visualize these results, Figs. 5 to 7 show the actual yields and
those predicted by the No-Arbitrage FAVAR, the BRS, the NS(AR),
and the Ap(3) model for some selected maturities. Fig. 5 plots the
outcomes for the 1-month ahead forecast horizon. According to
this plot, the NS(AR) and the Ag(3) model forecast the persistent
movements of yields quite well while the FAVAR model predicts
more variation than actual yields exhibit. In particular, the model’s
predictions appear to be particularly poor around turning points of
yield dynamics. Interestingly, the same observation applies to the
BRS model. Hence, both models that are based on macroeconomic
information tend to overstate the volatility of interest rates. This
confirms the relatively poor predictive ability of the two models
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Table 12
Out-of-sample RMSEs—Forecast Period 1994:01-2000:12
ym FAVAR BRS VARylds NS(VAR) NS(AR) Ao(3) AR(p) RW
Panel A: 1-month ahead forecasts
1 0.380 0.313 0.255 0.265 0.249 0.722 0.299 0.297
6 0.357 0.479 0.194 0.186 0.215 0.209 0.180 0.192
12 0.395 0.559 0.242 0.238 0.249 0.280 0.236 0.239
36 0.566 0.488 0.281 0.286 0.272 0.368 0.267 0.277
60 0.683 0.468 0.290 0.289 0.280 0.343 0.276 0.275
120 0.804 0.555 0.270 0.256 0.249 0.254 0.254 0.253
Panel B: 6-month ahead forecasts
1 0.625 0.893 0.696 0.509 0.532 1.140 0.683 0.635
6 0.594 1.108 0.799 0.660 0.648 0.936 0.719 0.655
12 0.656 1.199 0.898 0.778 0.711 0.999 0.815 0.742
36 0.650 1.142 0.947 0.877 0.747 0.938 0.895 0.834
60 0.742 0.994 0.949 0.885 0.764 0.834 0.868 0.821
120 0.879 0.826 0.911 0.793 0.694 0.637 0.760 0.730
Panel C: 12-month ahead forecasts
1 0.900 1.537 1.025 0.899 0.812 1.654 1.104 0.945
6 0.910 1.687 1.179 1.002 0.908 1.430 1.177 0.977
12 0.952 1.702 1.268 1.078 0.932 1414 1.205 1.017
36 0.983 1.532 1.333 1.168 0.937 1.188 1.228 1.078
60 1.055 1.284 1.331 1.179 0.979 1.007 1.176 1.072
120 1.160 1.005 1.333 1.089 0.941 0.775 1.028 0.985

This table summarizes the root mean squared errors obtained from out-of-sample yield forecasts. The models have been estimated using data from 1983:01 until the period
when the forecast is made. The forecasting period is 1994:01-2003:09. “FAVAR” refers to the No-Arbitrage Factor-Augmented VAR model; “BRS” denotes the arbitrage-free
Macro VAR model of Bernanke et al. (2004); “VARylds” refers to an unrestricted VAR(1) on yield levels; “NS(VAR)” and “NS(AR)” denote the Diebold-Li (2006) version of the
three-factor Nelson-Siegel model with VAR and AR factor dynamics, respectively; “Ag(3)” refers to the essentially affine latent yield factor model of Duffee (2002); “AR(p)”
denotes an AR model where the lag order p is recursively estimated; “RW” refers to the random walk forecast.

Table 13
Out-of-sample RMSEs—Forecast period 2000:01-2003:09
ym FAVAR BRS VARylds NS(VAR) NS(AR) Ao(3) AR(p) RW
Panel A: 1-month ahead forecasts
1 0.762 0.385 0.300 0.296 0.349 0.648 0.371 0.366
6 0.699 0.566 0.214 0.256 0.316 0.228 0.226 0.257
12 0.674 0.493 0.250 0.297 0.348 0.326 0.271 0.281
36 0.726 0.420 0.336 0.341 0.359 0.396 0.329 0.342
60 0.660 0.406 0.339 0.344 0.360 0.366 0.328 0.342
120 0.488 0.362 0.310 0.330 0.336 0.325 0.306 0.312
Panel B: 6-month ahead forecasts
1 0.581 0.761 0.896 1.027 1.231 1.391 1.120 1.165
6 0.617 1.058 1.038 1.148 1.298 1.085 0.978 1.118
12 0.735 1.090 1.153 1.213 1.327 1.169 0.988 1.078
36 0.879 0.885 1.150 1.095 1.158 0.972 0.887 0.956
60 0.830 0.745 1.019 0.969 1.020 0.841 0.797 0.868
120 0.656 0.586 0.798 0.716 0.759 0.709 0.562 0.634
Panel C: 12-month ahead forecasts
1 0.939 1.571 1.896 2.191 2.079 1.927 1.911 2.052
6 1.116 1.848 2.297 2.382 2.221 1.654 1.823 2.108
12 1.257 1.829 2.459 2461 2.288 1.749 1.805 2.030
36 1.224 1.385 2.085 2.084 1.974 1.471 1.372 1.601
60 1.069 1.066 1.738 1.711 1.660 1.252 1.111 1.329
120 0.842 0.760 1.275 1.175 1.185 1.022 0.716 0.891

This table summarizes the root mean squared errors obtained from out-of-sample yield forecasts. The models have been estimated using data from 1983:01 until the period
when the forecast is made. The forecasting period is 1994:01-2003:09. “FAVAR” refers to the No-Arbitrage Factor-Augmented VAR model; “BRS” denotes the arbitrage-free
Macro VAR model of Bernanke et al. (2004); “VARylds” refers to an unrestricted VAR(1) on yield levels; “NS(VAR)” and “NS(AR)” denote the Diebold-Li (2006) version of the
three-factor Nelson-Siegel model with VAR and AR factor dynamics, respectively; “A(3)” refers to the essentially affine latent yield factor model of Duffee (2002); “AR(p)”
denotes an AR model where the lag order p is recursively estimated; “RW"” refers to the random walk forecast.

at very short forecast horizons documented above. Yet, at the
6-months ahead forecast horizon the picture looks strikingly
different. In particular, as Fig. 6 shows, the No-Arbitrage FAVAR
model predicts the surge of yields in 1999 and 2000 quite well.
More impressively, it forecasts the strong decline of yields starting
in late 2000 very precisely. By contrast, both the NS(AR) and the
Ao(3) models miss the particular dynamics in this episode by a
few months. The affine macro VAR model of Bernanke et al. (2004)
forecasts the strong decline of interest rates somewhat earlier

than these two models, but overstates short and medium term
maturities at the end of the sample. Although less pronounced,
a similar pattern can be seen for the 12-months ahead forecasts,
provided in Fig. 7.

Altogether, these results show that the No-Arbitrage FAVAR
model performs particularly well compared to yield-based predic-
tion models in periods when interest rates exhibit strong variation.
To provide a more quantitative assessment of this finding, Table 13
displays the root mean squared forecast errors of the different
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Fig. 5. Observed and predicted yields—1 month ahead. This figure provides plots of the observed and 1-month ahead predicted time series for the 1-month, the 12-month,
the 3- and 10-year maturities. The observed yields are plotted by solid lines, whereas dashed, dash-dotted, and dotted lines correspond to predictions of the No-Arbitrage

FAVAR model, the NS(AR) model, and the Ay (3) model, respectively.

models for the subperiod 2000:01-2003:09. As can be seen from
the plots above, this period was characterized by an initial surge
of yields which was then followed by a sharp and persistent de-
cline of interest rates of all maturities. The results of Table 13 show
that over this particular sample period, the No-Arbitrage FAVAR
model strongly outperforms all competitor models at forecast hori-
zons 6-months and 12-months ahead for maturities up to 3 years.
More precisely, the reduction in RMSEs relative to the random walk
amounts to a striking 50% for very short maturities. Over the same
subperiod, the 5-year and 10-year yields are best predicted by the
BRS and AR(p)-models, respectively.

In sum, the results of the subsample analysis show that some
of the strong forecast performance of the Nelson-Siegel model
documented by Diebold and Li may be due to their choice of
forecast period. In addition, the superior predictive ability of the
model partly vanishes when confronted with the No-Arbitrage
FAVAR model which strongly outperforms all benchmark models
in periods when interest rates move a lot.

6. Conclusion

This paper presents a model of the term structure based on
the idea that the central bank uses a large set of conditioning
information when setting the short term interest rate and that this
information can be summarized by a few factors extracted from

a large panel of macroeconomic time series. Precisely, the Factor-
Augmented VAR (FAVAR) approach suggested by Bernanke et al.
(2005) is used to model the dynamics of the short-term interest
rate. Given this dynamic characterization of the short rate, the
term structure is then built up using restrictions implied by no-
arbitrage. This setup is labeled a “No-Arbitrage Factor-Augmented
VAR” approach. In contrast to most previously proposed macro-
finance models of the term structure, the model suggested in this
paper does not contain latent yield factors, but is entirely built
upon macroeconomic information.

Fitting the model to US data, I document that it explains
the dynamics of yields quite well. This underlines that most
of the variation of interest rates is captured by macroeconomic
variables. Most importantly, I find that the No-Arbitrage FAVAR
model exhibits a strikingly good ability to predict the yield curve
out-of-sample. In particular at intermediate and long forecast
horizons, the model outperforms various benchmarks including
the essentially affine three factor model of Duffee (2002) and the
dynamic variant of the Nelson-Siegel model that Diebold and Li
(2006) have recently suggested as a prediction model. A subsample
analysis of the forecast results documents that the No-Arbitrage
FAVAR model performs particularly well in periods when interest
rates exhibit pronounced dynamics.

Based on the findings of the paper, there are a number of
interesting directions for future research. First, while this paper
has focused on the predictive ability of the No-Arbitrage FAVAR
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Fig.6. Observed and predicted yields—6 months ahead. This figure provides plots of the observed and 6-months ahead predicted time series for the 1-month, the 12-month,
the 3- and 10-year maturities. The observed yields are plotted by solid lines, whereas dashed, dash-dotted, and dotted lines correspond to predictions of the No-Arbitrage

FAVAR model, the NS(AR) model, and the Ay(3) model, respectively.

approach, the model can also be used for structural economic
analysis. For example, it would be interesting to identify monetary
policy shocks as in Bernanke et al. (2005) and study their impact
on the yield curve. Second, based on estimates of term premia,
one could use the model to analyze the risk-adjusted expectations
of future monetary policy conditional on all macro information
available. Finally, estimating the model using a one-step likelihood
based Bayesian approach, one could easily add latent yield factors
and assess to what extent these enhance the explanatory and
predictive power of the model.
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Appendix A. Derivation of the bond pricing parameters

The absence of arbitrage between bonds of different maturity
implies the existence of the stochastic discount factor M such that

P = E M1 PO,

i.e. the price of a n-months to maturity bond in month t must
equal the expected discounted price of an (n — 1)-months to
maturity bond in month (t + 1). Following Ang and Piazzesi (2003),
the derivation of the recursive bond pricing parameters starts by
assuming that the nominal pricing kernel M takes the form

1
M1 = exp <_rt - E)L/tﬂ)‘t - )‘;wH»l)
and by guessing that bond prices P are exponentially affine in the
state variables Z, i.e.
P" = exp(A, + B.Z,).

Plugging the above expressions for P and M into the first
relation, one obtains
P = EMiy1 PV

1 /
=E |:EXP <_rt - EMQM - )»;wr+1> exp(Ap—1 + Bn,1zt+1)i|

1
= exp (—rt - EA;SZA[ +An_1>
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Fig. 7. Observed and predicted yields—12 months ahead. This figure provides plots of the observed and 12-months ahead predicted time series for the 1-month, the
12-month, the 3- and 10-year maturities. The observed yields are plotted by solid lines, whereas dashed, dash-dotted, and dotted lines correspond to predictions of the
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x E; [eXP(_kéwt-H + 32_1(ﬂv + @Z; + wt+1))]
1 /
= exp <—rt = MR+ Ant B Bn71¢Zt>

x E; [exp((—k; + B;F])wtﬂ)] .

Since the innovations w of the state variable process are
assumed Gaussian with variance-covariance matrix £, it is obvious
that

InE; [exp((—A; + Bj,_)@¢11)] = E; [In(exp((—A; + B, _)@¢41))]

1
Var; (In(exp((—A; + B,_;)@¢1)))

+ —
2

l /

> [A @A — 2B, RX + Bj,_, 2B, 1]
] / / 1 /

= ShRhe = By R + 5B 2By

Hence, E; [exp((—A; + B,_)@;+1)] = exp(3A; A — B}, 2},
+ 1B,_,2B,_,) and thus

1
P[(n) = exp (—rt — EA;SZ}W + A1+ B;,]IL + B;F]d)Zt 4+ ...

1 1
+ MR — B R + 5B;_]QB,.,_]> :

Using the relations r, = 8'Z; and A, = Ag + A1Z;, and matching
coefficients finally yields

P{" = exp(An + B,Z,),
where

1
Ap=Ap1 + B;]_1(IL — 2Xo) + EB;_1QBn—1’

and B, =B, (®—2xr) -7
These are the recursive equations of the pricing parameters stated
in (6) and (7).

Appendix B. Computation of standard errors by Monte Carlo

The two-step approach used to estimate the No-Arbitrage
FAVAR model implies a potential errors-in-variables bias since the
estimation of the market price of risk parameters takes as given the
estimated evolution of the states. To adjust for this bias, I compute
standard errors for Ay and A; using the following Monte Carlo
procedure.

From the estimation of the model, I save the model-implied
pricing errors and state innovations, respectively. Using the
stationary block bootstrap of Politis and Romano (1994a,b),° I then

9 This algorithm delivers blocks of time indexes that are of random length and
distributed according to the Geometric distribution with mean block length equal
to 1/q where q is a smoothing parameter to be chosen. In the implementation of
this algorithm, [ set ¢ = 1/12 which implies a mean block length of 12 months.
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Table 14
Parameter estimates for the BRS model: State dynamics
D D)
Emp 0.842 —0.146 0.370 —0.188 —0.362 0.324 0.369 —1.703 —0.078 —0.024
(0.151) (0.417) (0.820) (0.161) (0.232) (0.116) (0.536) (1.090) (0.193) (0.318)
b4 0.009 0.878 0.064 0.026 —0.044 —0.030 —0.090 —0.067 —0.012 0.025
(0.010) (0.132) (0.144) (0.021) (0.036) (0.011) (0.086) (0.182) (0.038) (0.033)
€ —0.003 0.054 1.030 0.057 0.042 —0.006 0.015 —0.115 —0.068 —0.048
(0.004) (0.033) (0.078) (0.014) (0.023) (0.006) (0.046) (0.110) (0.025) (0.032)
ED —0.045 0.326 —0.296 1.106 0.104 —0.000 —0.026 0.463 —0.299 —0.063
(0.019) (0.176) (0.290) (0.059) (0.107) (0.027) (0.178) (0.396) (0.099) (0.142)
y® —0.024 0.074 —0.073 0.243 0.814 —0.025 —0.120 —0.244 —0.144 —0.005
(0.020) (0.111) (0.369) (0.052) (0.093) (0.024) (0.132) (0.500) (0.087) (0.104)
D3 Dy
Emp 0.031 0.332 1.899 —0.239 0.063 —0.261 —0.209 —0.760 0.424 0.224
(0.073) (0.596) (1.160) (0.388) (0.288) (0.057) (0.549) (0.807) (0.273) (0.206)
b4 0.010 0.152 0.063 —0.029 —0.037 0.006 0.050 —0.056 0.025 0.036
(0.011) (0.079) (0.179) (0.043) (0.040) (0.009) (0.075) (0.105) (0.027) (0.036)
7€ 0.002 —0.007 —0.024 0.030 0.033 0.007 0.014 0.000 —0.010 —0.027
(0.007) (0.042) (0.103) (0.021) (0.023) (0.004) (0.032) (0.062) (0.012) (0.016)
ED 0.038 —0.237 —0.028 0.134 —0.025 0.010 —0.063 —0.034 —0.077 0.076
(0.032) (0.151) (0.486) (0.079) (0.084) (0.020) (0.163) (0.331) (0.067) (0.073)
y® 0.021 0.139 0.553 0.020 —0.087 0.024 —0.003 —0.350 —0.027 0.160
(0.023) (0.129) (0.362) (0.081) (0.078) (0.017) (0.129) (0.339) (0.052) (0.060)
2 12
Emp 1.485 0.552
(0.505) (0.445)
b4 0.003 0.028 0.034
(0.013) (0.006) (0.069)
¢ —0.005 0.002 0.006 0.045
(0.007) (0.001) (0.001) (0.025)
ED —0.037 0.006 0.003 0.159 0.078
(0.033) (0.004) (0.002) (0.017) (0.145)
y® —0.016 —0.000 0.004 0.038 0.108 0.054
(0.027) (0.003) (0.002) (0.010) (0.022) (0.139)

This table provides estimates of the parameters of the BRS model obtained using the full sample information, i.e. from estimating the model over the 1983:01-2003:09
period. The state dynamics are given by Z; = p + @1Zi—1 + -+ - ®4Z;_4 + w;, where E[w;w;] = $2. The states of the BRS model are given by the cyclical component of
payroll employment (Emp), PCE inflation (77 ), the Blue-Chip survey measure of expected inflation (7€), the year-ahead Eurodollar futures rate (ED), and the 1-month yield

o®).

Table 15

Parameter estimates for the BRS model: Market prices of risk

%o A

—18.781 —0.028 0.479 —0.670 —0.083 —0.004

(30.717) (0.220) (0.921) (1.063) (0.443) (0.368)

—94.238 —0.310 0.456 1.059 —1.258 0.761

(120.554) (1.341) (4.178) (4.491) (2.651) (2.010)

—64.335 0.171 2.701 1.381 0.408 0.532

(288.949) (2.351) (7.274) (10.629) (4.186) (2.960)

—42.076 0.054 —0.162 0.101 —0.610 0.459

(38.405) (0.266) (1.235) (1.386) (0.620) (0.443)

15.458 —0.034 0.783 —1.501 0.181 —0.274

(21.464) (0.247) (1.361) (2.055) (0.810) (0.716)

The market price of risk specification is Ay = Ao + A1Z; where 4y =

(5“(’), O1x(k+1)(p—1)) and Ay = ( M Ottt 1) et np-1) )
O(k+1)(p71)><(k+1) 0(k+1)(p71)><(k+1)(p71)

generate 1000 artificial samples of the state vector and the vector
of yields. In particular, in each bootstrap iteration I first simulate
the state equation (3) and then generate a set of artificial yields
by adding bootstrapped pricing errors to the model-implied yields.
The latter are obtained by simulating the term structure model
using the respective vector of sampled states and the estimated
model parameters.

For each of the 1000 generated samples of yields and factor
observations, | re-estimate the term structure model in two
steps. That is, I first estimate the parameters governing the state
dynamics using simple OLS. In a second step, I then take these
estimates as given and infer the market price of risk parameters
by minimizing the sum of squared fitting errors. Finally, I report as

parameter estimates and standard errors the means and standard
deviations from the so generated sample of model parameters.

Appendix C. In-sample estimation of the BRS model
See Tables 14 and 15.
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