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A B S T R A C T

We introduce quantile and moment impulse response functions for structural quantile vector
autoregressive models. We use them to study how climate-related natural disasters affect the
predictive distribution of output growth and inflation. Disasters strongly shift the forecast
distribution particularly in the tails. They result in an initial sharp increase of the downside
risk for growth, followed by a temporary rebound. Upside risk to inflation increases markedly
for a few months and then subsides. As a result, natural disasters have a persistent impact
on the conditional variance and skewness of macroeconomic aggregates which standard linear
models estimating conditional mean dynamics fail to match. We perform a scenario analysis
to evaluate the hypothetical effects of more frequent large disasters on the macroeconomy
due to increased atmospheric carbon concentration. Our results indicate a substantially higher
conditional volatility of growth and inflation as well as increased upside risk to inflation
particularly in a scenario where only currently pledged climate policies are implemented.

1. Introduction

Natural disasters such as hurricanes, wildfires, floods and droughts not only threaten the safety and livelihood of the people
irectly affected by such events, but they can also disrupt economic activity at a larger scale. While disasters are relatively rare
vents, they have become more frequent and larger in magnitude in recent decades. This is widely attributed to an increase in global
ean temperatures resulting from anthropogenic emissions of carbon dioxide (CO2) and other greenhouse gases. Quantifying the
acroeconomic costs of physical risks arising from climate change requires a thorough understanding of the economic dynamics

ssociated with natural disasters. While there is a growing body of work studying the economic effects of disasters, the existing
iterature has paid surprisingly little attention to the tail response of macroeconomic aggregates to such events.

In this paper, we quantify the impact of natural disasters on macroeconomic aggregates with a particular emphasis on conditional
density forecasts. We first make a number of methodological contributions by extending the structural quantile vector autoregressive
QVAR) approach of Chavleishvili and Manganelli (2024). Specifically, we introduce the concept of quantile impulse response functions

(QIRFs) as the difference between forecasts of regression quantiles with and without a shock to one of the variables in the QVAR.
his allows us to trace the entire distribution of potential outcomes conditional on the occurrence of a shock. We then show how
o employ these distributional forecasts to compute moment impulse response functions (MIRFs). The latter can be used to study the
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dynamic evolution of the moments of a forecast distribution conditional on a shock. We provide a subsampling algorithm to do
inference for these QIRFs and MIRFs.

We apply this novel toolkit to trace the predictive distribution of macroeconomic outcomes conditional on the occurrence of
atural disasters in the U.S. In our baseline analysis, we measure the intensity of natural disasters using the Costly Disaster (CD)

series proposed by Ludvigson et al. (2020), from which we purge disasters that are unrelated to weather events. We start by showing
hat the distribution of the costs associated with natural disasters over the past several decades features a heavy right tail: large
isasters are common, and increasingly so in recent years. As a result, standard econometric models designed to study the conditional
ean dynamics following disasters are inadequate to fully capture their effects. Our results suggest that natural disasters substantially

hift the distribution of key macroeconomic indicators. They increase the probability mass in the tails of the predictive distribution,
aking conditional forecasts substantially more uncertain and skewed. Specifically, disaster events immediately shift downward the

onditional distribution of real growth, but subsequently give rise to a strong positive rebound effect. In contrast, the conditional
ensity of inflation increases sharply on impact, but then fluctuates markedly in the following months. As a result, the conditional
olatility of real growth and inflation is substantially elevated for some time. In response to disaster shocks, the conditional skewness
s initially negative and subsequently positive for real growth and persistently positive for inflation. We subject our results to a host
f robustness checks and collect them in the Online Appendix.1

Our findings shed light on the tradeoffs that monetary and other stabilization policies are likely to face in the context of climate
change. As the near-term effects of large natural disasters resemble those of negative supply-shocks, standard monetary policy tools
are likely to have limited effects on stabilizing inflation and output. By quantifying the macroeconomic tail effects of climate-related

eather events, our findings can also inform the debate on the likely costs associated with different climate policies or their omission.
s a first step in this direction, we use our model to study the macroeconomic impact of scenarios where large natural disasters
ccur more frequently as a result of increased concentrations of carbon in the atmosphere.

Specifically, we first model the disaster frequency and intensity as a function of the global atmospheric carbon concentration
elying on the Gamma-zero distribution introduced in Monfort et al. (2017). We then study how the forecast distributions for output

growth and inflation would change under two scenarios for the evolution of this concentration. We obtain these from the Network
for the Greening of the Financial System (NGFS). The first scenario assumes that only currently pledged climate policies will take
effect, the second posits a transition to net zero carbon emissions by 2050. While both are associated with substantially more
mass on high disaster costs relative to the sample from 1980 through 2019, we document that the Current Policies scenario implies
considerably higher probabilities of large costly disasters than the Net Zero scenario. Our results also show that while the distribution
of the conditional mean of IP growth is fairly similar under both scenarios, there is substantially more volatility assuming that only
current policies will be implemented. For CPI inflation, both the conditional mean and the conditional volatility are shifted up under
the Current Policies scenario, suggesting that inflation will be substantially higher and more volatile if carbon emissions are not
substantially reduced.

Our finding that disasters exert significant macroeconomic impact particularly in the far right tail of the disaster distribution
s relevant in light of research emphasizing the potential implications of fat tails in the risk of catastrophic climate change. In a
eminal paper, Weitzman (2009) has argued that the combination of heavy tails, unlimited exposure to climate events and high risk

aversion implies that the expected loss from climate change is infinite. While his ‘‘dismal theorem’’ relies on knife-edge theoretical
assumptions and thus may be of limited practical relevance, the insight that heavy tails in the disaster distribution may have
substantial effects on the cost–benefit analysis of climate policies is more generally accepted Nordhaus (2011).

We contribute to studying the aggregate economic effects of natural disasters in the United States using macro-econometric
techniques.2 Kim et al. (2022) analyze the impact of extreme weather events in a smooth transition vector autoregressive framework
and find that such events have had significant macroeconomic effects only in recent years. Consistent with our results, extreme
weather events initially reduce industrial production growth and raise inflation. However, their approach does not allow to study
the effects of large disasters on the entire distribution of macroeconomic outcomes. Another important difference between our paper
and Kim et al. (2022) lies in the measurement of disaster events. They use the Actuaries Climate Index (ACI) to study the occurrence
of extreme weather events across the U.S., whereas our baseline analysis is based on the Costly Disaster (CD) index of Ludvigson
et al. (2020) which directly captures financial losses associated with disasters. While both series cover partly overlapping disaster
events, the CD index focuses only on disasters which have resulted in significant economic costs. We document robustness with
respect to using the ACI in the Online Appendix.

Ludvigson et al. (2020) study the impact of disaster shocks on the U.S. economy. Specifically, they order the CD series first in
 recursively identified linear VAR and find that disaster shocks exert significant transitory effects on production and employment.

They use the model to analyze the hypothetical effects of the COVID-19 pandemic. Importantly, however, their linear VAR model
oes not allow to study the effects of natural disasters on the conditional distribution of macroeconomic outcomes which is the focus
f our paper. A different approach has been taken by Mohaddes et al. (2022). These authors measure deviations of temperature and

1 First, we show that they are qualitatively unchanged when we rely on alternative measures of the intensity of natural disasters such as maximum sustained
wind speeds as in Bakkensen and Barrage (2018) or the Actuaries Climate Index (ACI) of Kim et al. (2022). Second, we find substantial effects of disasters
shocks for the Chicago Fed National Activity Index (CFNAI), a broader measure of aggregate economic activity than Industrial Production. Third, we document
that natural disasters do not only affect inflation through their impact on food and energy prices, but also have persistent effects on the tails of core inflation.
Finally, we report robustness of our results to the exclusion of the largest disaster in our sample, Hurricane Katrina in 2005.

2 A vast literature analyzes economic effects of climate change using a variety of alternative modeling approaches, including computable general equilibrium
odels or integrated assessment models. We provide a selective review in Section 2 and the Online Appendix.
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precipitation from their long-term moving-average values across U.S. states and use panel econometric techniques to show that these
eviations have persistent adverse effects on real output, labor productivity and employment.

A large literature examines the macroeconomic effects of natural disasters globally. For example, Noy (2009) documents a larger
short-run adverse impact of disasters on real GDP in developing compared to developed economies. Cavallo et al. (2013) use a similar
ataset to show that these effects are mainly driven by the largest disasters.

A few authors have studied the impact of climate-related natural disasters on inflation. Parker (2018) finds that while storms and
loods have minimal effects on inflation in developed economies, they have a more significant and persistent impact in developing

markets. Similarly, Faccia et al. (2021) show that heat waves strongly affect food price inflation in emerging markets but have little
r sometimes even negative effects on headline inflation

Methodologically, our paper is also loosely related to a new literature on structural VARs with infinite variance regressors. Davis
nd Ng (2022) show that when the endogenous variables have fat tails characterized by a Pareto distribution, the least squares

estimator is consistent but standard inference relying on asymptotic normality of the estimators is invalid. They propose an estimator
that is robust to infinite variance. Our inference does not assume a specific form of the limiting distribution. Instead, we rely on the
accurate approximations of the entire distributions of the endogenous variables including the disaster series by estimating conditional
quantile functions on the grid of quantiles.3

The paper is organized as follows. Section 2 sets the stage by briefly reviewing the mechanisms through which natural disasters
affect economic activity which have been discussed in the theoretical literature. Section 3 presents the methodology. It starts by
discussing estimation, inference, and forecasting in the Quantile VAR framework based on prior work. Building on these, it then
introduces the novel concepts of quantile and moment impulse response functions. Section 4 applies our methodology to study the
effects of natural disaster shocks on the conditional forecast distributions for output growth and inflation. Section 5 then provides
an analysis of the effects of different climate policy scenarios on the frequency and intensity of natural disasters and, by implication,
on the forecast distribution of macroeconomic aggregates. Section 6 concludes.

2. The economics of natural disasters

In this section, we aim to provide some brief guidance for interpreting our empirical results below. We do so by summarizing
the main classes of models through which natural disasters have macroeconomic consequences.4 Research distinguishes between
irect and indirect disaster effects. Directly, disasters cause immediate damages. Indirectly, they interrupt economic activity and
rompt positive spillovers from production substitution or reconstruction. These effects capture short- and long-term production and
onsumption losses. Typically, disasters prompt economic adjustment by causing sudden production factor losses, such as labor and
apital, which lead to shifts of the economic equilibrium.

Growth models. The literature has explored the effects of natural disasters using neoclassical growth models in the Ramsey–Solow
radition. A few prominent examples are Albala-Bertrand (1993), Lusardi (1998), Noy and Nualsri (2007), Loayza et al. (2012),

Okuyama (2003). In these models natural disasters can push the economy away from the steady-state by destroying part of the
capital stock and/or reducing the labor force. Recovery involves increased savings and rebuilding the capital stock. This leads to
 temporary output drop immediately after the disaster followed by a recovery. However, if the labor force shrinks, total output
ay permanently decrease due to insufficient savings. These models predict a short-term negative impact on output, while the

onger-term effects on output can be positive or negative. Furthermore, these models commonly focus on real outcomes and cannot
peak to the effects of disasters on inflation.

Input–output models. Input–Output (I–O) models analyze the economic impacts of natural disasters by assuming fixed output
proportions among sectors, affecting trade and output economy-wide. Shocks, like disasters, can impact demand or supply of one
r more sectors. If consumer demand is affected, all intermediate demands and supplies adjust. If supply is affected, final demand
estores economic equilibrium. ‘‘Inoperability Input–Output’’ (IIM) models (for an early example see Santos and Haimes, 2004)

capture temporary sector inoperability due to labor or capital stock reductions from disaster shocks. Extended I–O models examine
how local disasters can affect other regions or the overall economy (see, e.g., Okuyama, 2004, Sohn et al., 2004 or Hallegatte,
2008). While standard I–O models assume constant prices, Hallegatte (2008) introduces price adjustments during reconstruction.
Despite their potential relevance, models analyzing the granular origins of aggregate fluctuations (e.g., Gabaix, 2011, Acemoglu
t al., 2012) have – to the best of our knowledge – not yet been applied to natural disaster analysis.

Computable general equilibrium models. Computable General Equilibrium (CGE) macroeconomic models simulate how disruptions to
he supply of goods and services affect overall output and prices. They are typically more flexible than I–O models because they
nclude demand and supply in various markets in equilibrium and can allow for nonlinear effects such as economies of scale and
onlinear impact functions. They are thought to better capture the longer-run economic consequences of natural disasters (see,

e.g., Rose and Liao, 2005). However, their use in disaster analysis is relatively scarce. Exceptions include Carrera et al. (2015), who
study the economic impact of floods in Northern Italy and find substantial indirect economic losses and Rose et al. (2016) who
ntegrate a CGE model into an I–O model of the U.S. economy to study the potential impact of tsunamis hitting the Californian

Pacific coast.

3 The limiting distribution of the quantile regression estimator when variables have infinite variance is an important research question yet to be
explored (Koenker, 2005, see pages 127–128 for a brief discussion on the topic).

4 The Online Appendix contains a more detailed discussion of the economics of natural disasters. This closely follows the excellent literature review of
in Botzen et al. (2019) to which we refer the reader for more details.
3
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Integrated assessment models. Integrated assessment models (IAMs) are key in climate policy analyses, combining data and modeling
elements from various disciplines. They establish baseline scenarios and model how policy interventions such as carbon taxes affect
greenhouse gas emissions and by implication global temperatures. IAMs typically rely on ‘‘damage functions’’ to summarize the
impact of higher temperatures on the economy. While numerous IAMs exist, many are extensions of the seminal ‘‘DICE’’ model
y Nordhaus (1993). For instance, the REMIND-MAgPIE model used by the NGFS for scenario analysis, from which we obtain the
tmospheric carbon concentration pathways used in Section 5, is a modern variant of an IAM which combines different elements.
t the core is a Ramsey-type optimal growth model. This is complemented with an energy system module that includes a detailed

sectoral representation of energy supply and demand. The MAgPIE extension captures land-use dynamics, and the model is linked
to the climate model MAGICC to account for changes in global temperatures. For further details, see Hilaire and Bertram (2020).

Note that while many of these models discussed above are inherently nonlinear and as such may give rise to interesting
predictions about the dynamics of conditional higher moments of macroeconomic aggregates to disaster shocks, to the best of our
knowledge the theoretical literature has thus far not systematically explored these predictions.

3. Quantile VARs: Estimation, inference, and impulse response analysis

This section introduces the novel concepts of quantile impulse response functions (QIRFs) and moment impulse response functions
MIRFs). These form the basis of our empirical analysis in Section 4, where we trace the dynamic distributional effects of natural

disasters on the U.S. economy. Since they are defined in terms of quantiles and moments of the forecast distribution, we first
introduce the QVAR framework developed in prior work in Section 3.1. We then discuss estimation in Section 3.2, forecasting in
Section 3.3, and inference in Section 3.4. Finally, we describe our novel algorithms to compute QIRFs and MIRFs in Section 3.5.

3.1. The quantile vector autoregression model

As shown by Chavleishvili and Manganelli (2024), one can extend the quantile autoregression framework of Koenker and Xiao
(2006) to a multivariate setting. Let 𝑿𝑡 = (𝑋1,𝑡,… , 𝑋𝐾 ,𝑡)′ denote a vector of observables and {𝑢𝑖,𝑡} be a sequence of 𝑖.𝑖.𝑑. standard
uniform random variables for 𝑖 = 1,… , 𝐾, with the random variables 𝑢1,𝑡,… , 𝑢𝐾 ,𝑡 being independent of each other. Then, the VAR
model with random parameters of order 𝑝 ≥ 1 is given by

𝑿𝑡 = 𝝎(𝒖𝑡) +
𝑝
∑

𝑗=1
𝜱𝑗 (𝒖𝑡)𝑿𝑡−𝑗 + 𝜞 (𝒖𝑡)𝑿𝑡, (1)

where 𝝎(𝒖𝑡),𝜱𝑗 (𝒖𝑡) for 𝑗 = 1,… , 𝑝, and 𝜞 (𝒖𝑡) are 𝐾 × 1, 𝐾 ×𝐾 and 𝐾 ×𝐾 matrices of unknown parameters given as

𝝎(𝒖𝑡) =
[

𝜔1(𝑢1,𝑡),… , 𝜔𝐾 (𝑢𝐾 ,𝑡)
]′ , (2)

𝜱𝑗 (𝒖𝑡) =
⎡

⎢

⎢

⎣

𝛷𝑗 ,1,1(𝑢1,𝑡) … 𝛷𝑗 ,1,𝐾 (𝑢1,𝑡)
⋮ ⋮

𝛷𝑗 ,𝐾 ,1(𝑢𝐾 ,𝑡) … 𝛷𝑗 ,𝐾 ,𝐾 (𝑢𝐾 ,𝑡)

⎤

⎥

⎥

⎦

, (3)

𝜞 (𝒖𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 … 0 0
𝛤2,1(𝑢2,𝑡) 0 0 … 0 0
𝛤3,1(𝑢3,𝑡) 𝛤3,2(𝑢3,𝑡) 0 … 0 0

⋮ ⋮ ⋮
𝛤𝐾 ,1(𝑢𝐾 ,𝑡) 𝛤𝐾 ,2(𝑢𝐾 ,𝑡) 𝛤𝐾 ,3(𝑢𝐾 ,𝑡) … 𝛤𝐾 ,𝐾−1(𝑢𝐾 ,𝑡) 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (4)

Since the matrix 𝜞 (𝒖𝑡) is lower triangular with zeros on the main diagonal, contemporaneous interactions among the variables in
he vector 𝑿𝑡 are identified through their ordering. This is in the spirit of recursive identification of structural economic shocks
n linear VARs following the seminal work of Sims (1980). We discuss conditions for stationarity and geometric ergodicity of the
ector 𝑿𝑡 in the Online Appendix.

As shown by Koenker and Xiao (2006), an autoregression with random parameters gives rise to a dynamic conditional quantile
function with quantile-specific parameters under certain monotonicity conditions. Adopting this to our multivariate framework, let

1,𝑡 =
(

𝑿′
𝑡−1,𝑿

′
𝑡−2,… ,𝑿′

𝑡−𝑝

)′
and 𝑰 𝑖,𝑡 = (𝑰 ′

𝑖−1,𝑡, 𝑋𝑖−1,𝑡)′ for 𝑖 = 2,… , 𝐾 be a recursive information set. The arguments of Koenker and
Xiao (2006) and Chavleishvili and Manganelli (2024) imply that for any 𝑖 = 1,… , 𝐾, if the random variable 𝑋𝑖,𝑡 is monotonically
increasing in 𝑢𝑖,𝑡 given 𝑰 𝑖,𝑡, then the conditional quantile function of 𝑋𝑖,𝑡 is given as

𝑞𝑋𝑖,𝑡
(𝜃𝑖,𝒁 𝑖,𝑡) = 𝒁′

𝑖,𝑡𝜷𝑖(𝜃𝑖), (5)

where 𝒁 𝑖,𝑡 = (1, 𝑰 ′
𝑖,𝑡)

′ and 𝜷𝑖(𝜃𝑖) contain the parameters of equation 𝑖 of the System (1) evaluated at the quantile 𝜃𝑖 ∈ (0, 1).5
In particular 𝜷1(𝜃1) =

[

𝜔1(𝜃1),𝜱1,1(𝜃1),… ,𝜱𝑝,1(𝜃1)
]′, 𝜷2(𝜃2) =

[

𝜔2(𝜃2),𝜱1,2(𝜃2),… ,𝜱𝑝,2(𝜃2), 𝛤2,1(𝜃2)
]′ and for 𝑖 = 3,… , 𝐾 we have

𝜷𝑖(𝜃𝑖) =
[

𝜔𝑖(𝜃𝑖),𝜱1,𝑖(𝜃𝑖),… ,𝜱𝑝,𝑖(𝜃𝑖), 𝛤𝑖,1(𝜃𝑖),… , 𝛤𝑖,𝑖−1(𝜃𝑖)
]′, where 𝜱𝑗 ,𝑖(⋅) is the 𝑖th row of the matrix 𝜱𝑗 (⋅).

This reveals a very flexible feature of the data-generating process (1) as it gives rise to the dynamic conditional quantile function
5) with quantile-specific parameters. Hence, the random variables {𝑋1,𝑡,… , 𝑋𝐾 ,𝑡} mutually affect the entire shape of each other’s

conditional distributions and not just their conditional mean as implied by a standard linear VAR model.6

5 Let the random variable 𝑋𝑖,𝑡 be denoted as 𝑋𝑖,𝑡(𝑢𝑖,𝑡), indicating its dependence on 𝑢𝑖,𝑡. Then 𝑞𝑋𝑖,𝑡 (𝑢𝑖,𝑡 )(𝜃𝑖 ,𝒁 𝑖,𝑡) = 𝑋𝑖,𝑡(𝑞𝑢𝑖,𝑡 (𝜃𝑖)) is an immediate consequence of
onotonicity. If we suspect that monotonicity fails, one can use for instance a rearrangement method by Chernozhukov et al. (2010).
4
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3.2. Estimation

Note that the function 𝑞𝑋𝑖,𝑡
(𝜃𝑖,𝒁 𝑖,𝑡), defined in Eq. (5), must satisfy the conditional quantile restriction

Pr
[

𝑋𝑖,𝑡 < 𝑞𝑋𝑖,𝑡
(𝜃𝑖,𝒁 𝑖,𝑡)|𝑰 𝑖,𝑡

]

= 𝜃𝑖, 𝑖 = 1,… , 𝐾 , (6)

and its estimates are defined as 𝑞𝑋𝑖,𝑡
(𝜃𝑖,𝒁 𝑖,𝑡) = 𝒁′

𝑖,𝑡𝜷̂𝑖(𝜃𝑖), where

𝜷̂𝑖(𝜃𝑖) = ar g min
𝜷𝑖∈R𝑝𝐾+𝑖

𝑇
∑

𝑡=𝑝+1
𝜌𝜃𝑖 (𝑋𝑖,𝑡 −𝒁′

𝑖,𝑡𝜷𝑖). (7)

Here, 𝜌𝜃(𝑣) = 𝑣(𝜃 − 𝐼(𝑣 < 0)) is an asymmetric loss function introduced by Koenker and Bassett (1978), 𝐼(⋅) is an indicator function
and 𝜃𝑖 ∈ (0, 1) is a quantile index. In practice, estimation of the parameters is done equation by equation using the interior point
lgorithm of Koenker and Park (1996).

The asymptotic properties of dynamic quantile regressions have been studied extensively in the literature. Most impor-
tantly, White et al. (2015, Theorem 1 and Theorem 2) show that 𝜷̂𝑖(𝜃𝑖) is consistent and asymptotically normal. The key input for
istributional impulse responses that we introduce below are conditional forecasts. As these depend on a large number of parameters,
t is computationally challenging to apply the asymptotic results of White et al. (2015). In order to make feasible inference, we

therefore rely on subsampling. We discuss this approach in Section 3.4 below.

3.3. Forecasting

Note that there is an inverse mapping from Eq. (5) to the vector 𝑿𝑡 in Eq. (1). Hence, when we utilize the regression quantile
ramework to estimate the unknown parameters of the model, we can subsequently simulate the data to run counterfactual economic
nalyses. To illustrate this, consider the case when 𝐾 = 2, and 𝑝 = 1, and suppose 𝑋1,𝑇+1 is subject to a shock of size 𝜅1. This will have
n instantaneous effect on the entire conditional distribution, not just the mean, of the random variable 𝑋2,𝑇+1 and thus also on the
ntire conditional distributions of the future values

(

𝑋1,𝑇+𝑙 , 𝑋2,𝑇+𝑙
)

, 𝑙 = 2,… , ℎ. Hence, we can attribute particular dynamics in the
conditional distribution of the endogenous variables to this shock. To investigate this impact, we can simulate a standard uniform
andom variable 𝑢(1)2,1 and calculate 𝑋(1)

2,𝑇+1 = 𝑞𝑋2,𝑇+1

(

𝑢(1)2,1,𝒁2,𝑇+1

)

where 𝒁2,𝑇+1 =
(

1, 𝑋1,𝑇 , 𝑋2,𝑇 , 𝜅1
)′. To simulate further future

values, again simulate the independent standard uniform random variables 𝑢(1)1,2 and 𝑢(1)2,2 and construct 𝑋(1)
1,𝑇+2 = 𝑞𝑋1,𝑇+2

(

𝑢(1)1,2,𝒁
(1)
1,𝑇+2

)

and 𝑋(1)
2,𝑇+2 = 𝑞𝑋2,𝑇+2

(

𝑢(1)2,2,𝒁
(1)
2,𝑇+2

)

where 𝒁(1)
1,𝑇+2 =

(

1, 𝜅1, 𝑋(1)
2,𝑇+1

)

and 𝒁(1)
2,𝑇+2 =

(

1, 𝜅1, 𝑋(1)
2,𝑇+1, 𝑋

(1)
1,𝑇+2

)

.

This procedure can be iterated further and repeated multiple times such that one obtains multiple forecast paths
(

𝜅1, 𝑋(𝑠)
2,𝑇+1

)

,
(

𝑋(𝑠)
1,𝑇+2, 𝑋

(𝑠)
2,𝑇+2

)

,… ,
(

𝑋(𝑠)
1,𝑇+ℎ, 𝑋

(𝑠)
2,𝑇+ℎ

)

for 𝑠 = 1,… , 𝑆. Hence, the conditional distributions of each variable can be studied at any
iven forecast horizon 𝑙 = 1,… , ℎ. This allows us to generate a random variable using its quantile function and standard uniform
andom variables.

This forecasting technique, which is sometimes referred to as inverse transform sampling, has also been used by Xiao (2017,
Section 17.9) in a univariate context, and by Wei (2008, Lemma 1) and Chavleishvili and Manganelli (2024, Section 2.2) in the
riangular multivariate case. In practice, the forecasting procedure entails setting up a grid of 𝑁 quantile indices 0 < 𝜃1 < 𝜃2 < ⋯ <

𝑁 < 1 and estimating the parameters of the model at those quantiles for each equation 𝑖.7 The forecasting is then carried out by
andomly and independently drawing from those parameters. The following sampling procedure for forecasting is a generalization

to multiple lags of the approach in Chavleishvili and Manganelli (2024, Section 2.2). In Section 3.5, we then extend this idea to
design the bootstrap and subsampling procedures for inference purposes.

Algorithm 1 (Sampling for Forecasting). The following algorithm constructs the forecast distribution of the vector 𝑿𝑡.

(1) Specify a finite grid of quantiles

0 < 𝜃1 < 𝜃2 < ⋯ < 𝜃𝑁 < 1. (8)

Estimate the parameters for each equation of the model (1)–(5) at these grid values, construct and store the matrices
𝝎̂(𝜽), 𝜱̂1(𝜽),… , 𝜱̂𝑝(𝜽), and 𝜞̂ (𝜽) at each quantile 𝜽 = (𝜃1,… , 𝜃𝐾 )′ from the grid (8).

6 In a standard linear VAR model, the parameter matrices 𝜱𝑗 (𝒖𝑡) = 𝜱𝑗 , for 𝑗 = 1,… , 𝑝 and 𝜞 (𝒖𝑡) = 𝜞 are constants for any 𝑡. Then, a conditional quantile
function of the random variable 𝑋𝑖,𝑡 will only have a quantile specific intercept and will thus only affect its conditional mean.

7 As discussed by Portnoy (1991), in finite samples the number of distinct quantiles are limited. This justifies the use of a grid.
5
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𝑿

(2) Simulate independently a sequence of a 𝐾 × 1 vector of uniform random variables
{

𝒖(𝑠)𝑙

}ℎ

𝑙=1
and use the coefficient matrices

corresponding to the respective quantiles given by these draws. Based on the contemporaneous and lagged vector of data
𝑿𝑇 ,𝑿𝑇−1, … ,𝑿𝑇−𝑝+1, and the estimated parameters for the quantile

{

𝒖(𝑠)𝑙

}ℎ

𝑙=1
, calculate the out-of sample values as follows

𝑿(𝑠)
𝑇+1 = 𝝎̂

(

𝒖(𝑠)1

)

+ 𝜱̂1

(

𝒖(𝑠)1

)

𝑿𝑇 + 𝜱̂2

(

𝒖(𝑠)1

)

𝑿𝑇−1 +⋯ + 𝜱̂𝑝

(

𝒖(𝑠)1

)

𝑿𝑇−𝑝+1

+ 𝜞̂
(

𝒖(𝑠)1

)

𝑿(𝑠)
𝑇+1,

𝑿(𝑠)
𝑇+2 = 𝝎̂

(

𝒖(𝑠)2

)

+ 𝜱̂1

(

𝒖(𝑠)2

)

𝑿(𝑠)
𝑇+1 + 𝜱̂2

(

𝒖(𝑠)2

)

𝑿𝑇 +⋯ + 𝜱̂𝑝

(

𝒖(𝑠)2

)

𝑿𝑇−𝑝+2

+ 𝜞̂
(

𝒖(𝑠)2

)

𝑿(𝑠)
𝑇+2,

⋮

𝑿(𝑠)
𝑇+𝑙 = 𝝎̂

(

𝒖(𝑠)𝑙

)

+ 𝜱̂1

(

𝒖(𝑠)𝑙

)

𝑿(𝑠)
𝑇+𝑙−1 + 𝜱̂2

(

𝒖(𝑠)𝑙

)

𝑿(𝑠)
𝑇+𝑙−2 +⋯ + 𝜱̂𝑝

(

𝒖(𝑠)𝑙

)

𝑿(𝑠)
𝑇+𝑙−𝑝

+ 𝜞̂
(

𝒖(𝑠)𝑙

)

𝑿(𝑠)
𝑇+𝑙 , 𝑙 = 𝑝 + 1,… , ℎ.

(3) Repeat step (2) 𝑆 >> 0 times and collect the forecasts 𝜻𝑆 ,𝑙 =
{

𝑿(1)
𝑇+𝑙 ,… ,𝑿(𝑆)

𝑇+𝑙

}

for 𝑙 = 1,… , ℎ.

The forecasting algorithm above is based on the assumption that no shock is hitting the variables in 𝑿. However, we can also
se Algorithm 1 to compute forecasts 𝜻∗𝑆 ,𝑙 =

{

𝑿∗(1)
𝑇+𝑙 ,… ,𝑿∗(𝑆)

𝑇+𝑙

}

conditional on a shock 𝑋𝑖,𝑇+1 = 𝜅𝑖 for any 𝑙 = 1,… , ℎ. Specifically,
𝑖,𝑇+1 is replaced by 𝜅𝑖 in each repetition of the sampling algorithm. In Section 3.5 below, we make use of this insight to construct

distributional impulse response functions.

3.4. Inference

For inference, we rely on the quantile bootstrap approach proposed by Koenker (1994), which is closely related to the forecasting
Algorithm 1. The difference is that the quantile bootstrap regenerates the data in-sample, while Algorithm 1 constructs them out-of-
sample. Since it relies on sampling from the estimated quantile functions, as long as the conditional quantile functions are accurately
specified, this procedure can be applied to any type of model.8 The following algorithm adapts his procedure to our model.

Algorithm 2 (QVAR Bootstrap).

(1) For a finite grid of quantiles (8), estimate for each equation 𝑖 the parameters of the model (1)–(5) at these grid values,
construct and store the matrices 𝝎̂(𝜽), 𝜱̂1(𝜽),… , 𝜱̂𝑝(𝜽), and 𝜞̂ (𝜽). Construct estimates of the conditional quantile functions
𝑞𝑋𝑖,𝑡

(𝜃𝑗 ,𝒁 𝑖,𝑡) for each equation 𝑖 = 1,… , 𝐾 and quantile 𝑗 = 1,… , 𝑁 .
(2) For each 𝑝 < 𝑡 ≤ 𝑇 and equation 𝑖 = 1,… , 𝐾, find the 𝜃𝑗 from the grid (8) that minimizes the distance |𝑋𝑖,𝑡 − 𝑞𝑋𝑖,𝑡

(𝜃𝑗 ,𝒁 𝑖,𝑡)|.
Collect and store those values as {𝜽𝑡}𝑇𝑡=𝑝+1.

(3) Draw independently a sequence of a 𝐾 × 1 vector of random variables
{

𝒖(𝑏)𝑡

}𝑇

𝑡=𝑝+1
from the sequence {𝜽𝑡}𝑇𝑡=𝑝+1 and generate

the bootstrap sample recursively as follows

𝑿(𝑏)
𝑝+1 = 𝝎̂

(

𝒖(𝑏)𝑝+1

)

+ 𝜱̂1

(

𝒖(𝑏)𝑝+1

)

𝑿𝑝 + 𝜱̂2

(

𝒖(𝑏)𝑝+1

)

𝑿𝑝−1 +⋯ + 𝜱̂𝑝

(

𝒖(𝑏)𝑝+1

)

𝑿1

+ 𝜞̂
(

𝒖(𝑏)𝑝+1

)

𝑿(𝑏)
𝑝+1,

𝑿(𝑏)
𝑝+2 = 𝝎̂

(

𝒖(𝑏)𝑝+2

)

+ 𝜱̂1

(

𝒖(𝑏)𝑝+2

)

𝑿(𝑏)
𝑝+1 + 𝜱̂2

(

𝒖(𝑏)𝑝+2

)

𝑿𝑝 +⋯ + 𝜱̂𝑝

(

𝒖(𝑏)𝑝+2

)

𝑿2

+ 𝜞̂
(

𝒖(𝑏)𝑝+2

)

𝑿(𝑏)
𝑝+2,

⋮

𝑿(𝑏)
𝑡 = 𝝎̂

(

𝒖(𝑏)𝑡

)

+ 𝜱̂1

(

𝒖(𝑏)𝑡

)

𝑿(𝑏)
𝑡−1 + 𝜱̂2

(

𝒖(𝑏)𝑡

)

𝑿(𝑏)
𝑡−2 +⋯ + 𝜱̂𝑝

(

𝒖(𝑏)𝑡

)

𝑿(𝑏)
𝑡−𝑝

+ 𝜞̂
(

𝒖(𝑏)𝑡

)

𝑿(𝑏)
𝑡 , 𝑡 = 2𝑝 + 1,… , 𝑇 .

(4) Repeat step (3) 𝐵 >> 0 times and collect the bootstrap sample
{

{

𝑿(𝑏)
𝑡

}𝑇

𝑡=𝑝+1

}𝐵

𝑏=1
.

Note that if the parameter matrices 𝜞 (𝜽) and 𝜱𝑗 (𝜽) for 𝑗 = 1,… , 𝑝 are identical across quantiles, then Algorithm 2 is equivalent to
the standard recursive residual-based bootstrap applied to linear dynamic time-series models with constant parameters (Gonçalves
and Kilian, 2004).

8 Note that the quantile bootstrap by Koenker (1994) is directly related to the rearrangement technique proposed by Chernozhukov et al. (2010) for
monotonization of quantile functions. In fact, these authors introduce the term quantile bootstrap.
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3.5. Distributional impulse response analysis

In this section we introduce two different but related concepts of impulse response functions (IRFs). First, we quantify the effect of
tructural shocks on the quantiles of the forecast distribution. Second, we explore how specific moments of the forecast distribution
espond to these shocks.

3.5.1. Quantile IRFs
We assess the statistical significance of a shock to a variable 𝑋𝑗 ,𝑡 in the QVAR model (5) on the entire conditional forecast

distribution of a variable 𝑋𝑖,𝑡, for 𝑖, 𝑗 = 1,… , 𝐾. We do so by defining quantile IRFs (QIRFs) as the difference between quantiles of
the population conditional forecast distribution of a random variable 𝑋𝑖,𝑡 with and without the shock

𝜟𝑖,𝑗 (𝜃 , 𝑙) ≡ 𝑞𝑋𝑖,𝑇+𝑙
(𝜃 , 𝑋𝑗 ,𝑇+1 = 𝜅𝑗 ,𝑿′

𝑇 ,… ,𝑿′
𝑇−𝑝+1) − 𝑞𝑋𝑖,𝑇+𝑙

(𝜃 ,𝑿′
𝑇 ,… ,𝑿′

𝑇−𝑝+1), (9)

for 𝑙 ≥ 1, where 𝜅𝑗 is the size of the shock hitting 𝑋𝑗 ,𝑇+1 and 𝜃 ∈ (0, 1) is the quantile of the forecast distribution. As a result, the
QIRFs generalize the standard concept of IRFs which trace the mean responses of the conditional forecast distribution (Lütkepohl,
2005).9

In line with Chernozhukov et al. (2013), we label the forecast distribution conditional on the shock the ‘‘counterfactual
distribution’’ and that conditional on no shock hitting the ‘‘factual distribution’’. The QIRF compares the same quantiles of these
wo forecast distributions. In particular, at any horizon 𝑙 ≥ 1 we can calculate the empirical quantiles 𝜃 of the two sets of forecasts
∗
𝑆 ,𝑙 =

{

𝑿∗(1)
𝑇+𝑙 ,… ,𝑿∗(𝑆)

𝑇+𝑙

}

and 𝜻𝑆 ,𝑙 =
{

𝑿(1)
𝑇+𝑙 ,… ,𝑿(𝑆)

𝑇+𝑙

}

calculated using Algorithm 1 for a large number of draws 𝑆, where the former
s constructed conditional on the shock 𝑋𝑗 ,𝑇+1 = 𝜅𝑗 . We define the estimator 𝜟̂𝑖,𝑗 (𝜃 , 𝑙) of the quantile impulse response functions
n Eq. (9) as the difference between these two empirical quantiles. This allows us to measure the impact of a shock at various forecast
orizons and forecast quantiles. Note that our approach is similar in spirit to that for mean IRFs in nonlinear dynamic models which
re calculated as empirical averages of predictions obtained through simulations (Koop et al., 1996).

Further note that since they are empirical quantiles of forecasts, these forecast distributions are monotone by construction.
However, their difference does not have to be. As a result, the QIRFs defined above can be non-monotone implying that a given
uantile impulse response at a given forecast horizon can be larger or smaller than impulse responses for adjacent quantiles at the

same horizon.
It is important to stress that the QIRFs defined in Eq. (9) bear similarities with the QIRFs introduced in Chavleishvili and

Manganelli (2024, Section 3). Their concept, influenced by a literature on stress testing, compares future values of a variable with
and without a shock calculated using a sequence of specific quantile indices. In contrast, we compute the difference of empirical
quantiles of forecasts with and without a shock calculated using a large set of draws of all quantile indices. As a result, we compare
ntire forecast distributions rather than specific quantiles, and thus our approach is more general.

Note that the QIRFs in Eq. (9) are calculated using a large number of parameters. To facilitate inference, we suggest the following
subsampling algorithm. This procedure does not require re-computation of the parameters and is therefore straightforward to apply.

Algorithm 3 (Subsampling).

(1) Apply Algorithm 1 and produce a set of 𝑆 predicted values 𝜻∗𝑆 ,𝑙 =
{

𝑿∗(1)
𝑇+𝑙 ,… ,𝑿∗(𝑆)

𝑇+𝑙

}

and 𝜻𝑆 ,𝑙 =
{

𝑿(1)
𝑇+𝑙 ,… ,𝑿(𝑆)

𝑇+𝑙

}

, where 𝜻∗𝑆 ,𝑙
is conditional on the shock 𝑋𝑗 ,𝑇+1 = 𝜅𝑗 , 𝑙 = 1,… , ℎ, 𝑆 >> 0 and 𝑗 = 1,… , 𝐾. Define the estimator 𝜟̂𝑖,𝑗 (𝜃 , 𝑙) of the QIRFs in
Equation (9) as the difference between empirical quantiles 𝜃 of the sets 𝜻∗𝑆 ,𝑙 and 𝜻𝑆 ,𝑙 at any 𝑙, 𝜃 ∈ (0, 1) and for 𝑖 = 1,… , 𝐾.

(2) For a given 𝑙 from the sets 𝜻∗𝑆 ,𝑙 and 𝜻𝑆 ,𝑙, randomly construct 𝑛 subsamples each of size 𝑚. Calculate empirical quantiles for
each subsample 𝑟 = 1,… , 𝑛 at a quantile index 𝜃 ∈ (0, 1) and calculate the QIRFs 𝜟̂(𝑟)

𝑖,𝑗 (𝜃 , 𝑙) as their difference.
(3) For a significance level 𝛼, calculate the (𝛼∕2) and (1 − 𝛼∕2) empirical quantiles of the set

{

𝜟̂(𝑟)
𝑖,𝑗 (𝜃 , 𝑙) − 𝜟̂𝑖,𝑗 (𝜃 , 𝑙)

}

and denote
them as 𝑡𝜟𝑖,𝑗 (𝜃 ,𝑙)(𝛼∕2) and 𝑡𝜟𝑖,𝑗 (𝜃 ,𝑙)(1 − 𝛼∕2). Then define the confidence intervals for the QIRFs as follows:

ĈI𝜟𝑖,𝑗 (𝜃 ,𝑙)(𝛼) ≡
[

𝜟̂𝑖,𝑗 (𝑙 , 𝜃) − 𝑡𝜟𝑖,𝑗 (𝜃 ,𝑙)(1 − 𝛼∕2), 𝜟̂𝑖,𝑗 (𝑙 , 𝜃) − 𝑡𝜟𝑖,𝑗 (𝜃 ,𝑙)(𝛼∕2)
]

.

These confidence intervals are the percentile intervals of Hall (1992), as discussed e.g. by Lütkepohl (2005, p. 710). Suppose
→ ∞, then for 𝑚, 𝑆 → ∞ and 𝑚2∕𝑆 → 0 the subsampling procedure with replacement has been shown to be valid in Politis et al.

(1999, Theorem 2.2.1 and Corollary 2.3.1.). These authors also discuss various rules for selecting the subsample size 𝑚 and number
𝑛 with emphasis either on the minimum variance or stability of the confidence intervals of estimates. In practice, simple rules prove
o be effective. In particular, we follow Sakov and Bickel (2000) and use the rule 𝑚 = ⌊𝜏 𝑆2∕5

⌋, where ⌊⋅⌋ stands for the integer part,
with 𝜏 = 5, 𝑆 = 105 and 𝑛 = 104.10

9 Note that if the data-generating process of 𝑿𝑡 is Gaussian, then the median IRF will correspond to a standard impulse response function 𝜟𝑖,𝑗 (0.5, 𝑙) ≈
E (𝑋𝑖,𝑇+𝑙|𝑋𝑗 ,𝑇+1 = 𝜅𝑗 ,𝑿′

𝑇 ,… ,𝑿′
𝑇−𝑝+1) − E (𝑋𝑖,𝑇+𝑙|𝑿′

𝑇 ,… ,𝑿′
𝑇−𝑝+1), 𝑙 ≥ 1.

10 See for instance Chernozhukov (2002) and Chernozhukov and Fernández-Val (2005) for a related discussion. We also consider 𝜏 = 4, 6 for the robustness
hecks reported in the Online Appendix.
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3.5.2. Moment IRFs
We have shown how to trace the effect of structural shocks on the entire forecast distribution of variables in a QVAR. It is

nstructive to summarize these forecast distributions using the first four moments. We define moment IRFs (MIRFs) as the difference
etween moments of the conditional forecast distribution of a random variable 𝑋𝑖,𝑡 with and without a shock:

𝜹𝑖,𝑗 (𝑙) ≡ 𝑚𝑋𝑖,𝑇+𝑙
(𝑋𝑗 ,𝑇+1 = 𝜅𝑗 ,𝑿′

𝑇 ,… ,𝑿′
𝑇−𝑝+1) − 𝑚𝑋𝑖,𝑇+𝑙

(𝑿′
𝑇 ,… ,𝑿′

𝑇−𝑝+1), (10)

for 𝑙 ≥ 1, 𝑖, 𝑗 = 1,… , 𝐾, where 𝜅𝑗 is the size of the shock hitting 𝑋𝑗 ,𝑇+1 and where the function 𝑚𝑋𝑖,𝑇+𝑙
(⋅) represents one of the first

our conditional moments of variable 𝑋𝑖,𝑇+𝑙 at forecast horizon 𝑙.
The following procedure describes the computation of the MIRF via random sampling. First, we generate forecasts 𝜻∗𝑆 ,𝑙 ≡

{

𝑿∗(1)
𝑇+𝑙 ,… ,𝑿∗(𝑆)

𝑇+𝑙

}

and 𝜻𝑆 ,𝑙 ≡
{

𝑿(1)
𝑇+𝑙 ,… ,𝑿(𝑆)

𝑇+𝑙

}

using Algorithm 1, where 𝜻∗𝑆 ,𝑙 is conditional on the shock 𝑋𝑗 ,𝑇+1 = 𝜅𝑗 . Second, we
alculate the empirical mean, standard deviation, skewness and kurtosis of each pair of forecast sets 𝜻∗𝑆 ,𝑙 and 𝜻𝑆 ,𝑙 for any forecast
orizon 𝑙. We define the estimator 𝜹̂𝑖,𝑗 (𝑙) of the moment impulse response functions in Eq. (10) as the difference between these two

empirical moments.
For inference, we again adapt Algorithm 3 to the definition of the MIRFs and calculate the confidence intervals accordingly.

In particular, we define the confidence interval at a significance level 𝛼 as ĈI𝜹𝑖,𝑗 (𝑙)(𝛼) ≡
[

𝜹̂𝑖,𝑗 (𝑙) − 𝑡𝜹𝑖,𝑗 (𝑙)(1 − 𝛼∕2), 𝜹̂𝑖,𝑗 (𝑙) − 𝑡𝜹𝑖,𝑗 (𝑙)(𝛼∕2)
]

,

here the quantities 𝑡𝜹𝑖,𝑗 (𝑙)(1 − 𝛼∕2) and 𝑡𝜹𝑖,𝑗 (𝑙)(𝛼∕2) are the (1 − 𝛼∕2) and (𝛼∕2) empirical quantiles of the set
{

𝜹̂(𝑟)𝑖,𝑗 (𝑙) − 𝜹̂𝑖,𝑗 (𝑙)
}

, and

here 𝜹̂(𝑟)𝑖,𝑗 (𝑙) is constructed as the difference between the empirical moments calculated using 𝑟 = 1,… , 𝑛 sub-samples each of size
from the sets 𝜻∗𝑆 ,𝑙 and 𝜻𝑆 ,𝑙.

4. Tracing the effects of disasters with a QVAR

In this section, we use the QVAR methodology laid out in the previous section to quantify the macroeconomic effects of natural
disasters in the U.S. We first discuss the properties of the Costly Disaster index which we use for our baseline analysis. We then
discuss the model specification and provide evidence on the fit of the conditional quantile function. We next document the in-sample
fit of the model for a specific large disaster event and then discuss the quantile and moment impulse responses of disaster shocks
more generally. Finally, we discuss our results with a particular focus on explanations why disasters that hit only parts of the U.S.
have had nation-wide effects.

4.1. A first look at the data

In this section we take a first look at the data to study the properties of the economic costs of natural disasters in the United
tates. We measure natural disasters using the costly disaster (CD) index constructed by Ludvigson et al. (2020). This index captures

financial losses due to natural disasters based on insurance data for an exhaustive list of disasters in the U.S. The index aggregates
information on the costs of disasters from several sources, including the National Oceanic and Atmospheric Administration (NOAA)
and the Insurance Information Institute (III), for more details see Ludvigson et al. (2020). Since our focus is on natural disasters
only, we restrict our sample to the period from January 1980 through December 2019 and thus exclude the coronavirus epidemic.
We also drop the terrorist attacks of 9/11 from our sample.

Fig. 1 plots the financial losses related to natural disasters in the U.S. from 1980 through 2019. The largest three disasters in
this sample period were all hurricanes: Katrina in August 2005, Sandy in October 2012 and Harvey/Irma/Maria which occurred in
short succession in August and September of 2017. Those events resulted in major damage and loss of lives, and the U.S. economy
incurred large financial losses as captured by the CD series. Hurricane Katrina, for example, was associated with staggering economic
costs of more than 160 billion in terms of 2019 US dollars. Another observation that follows from Fig. 1 is that very costly disasters
occur frequently, particularly in the latter part of the sample. This is in line with evidence that the observed increase in global mean
emperatures has raised the probability of natural disasters such as hurricanes and floods in recent decades Masson-Delmotte et al.

(2018).
To illustrate that large disasters occur frequently, Fig. 2 shows a Q-Q plot of the costly disaster series. This allows us to compare

the quantiles of the costly disaster series with those of a standard normal distribution. If the CD series was normally distributed, the
blue dots would lie on the red line. Instead, we see a sharp deviation. This implies that the CD series has a heavy right tail. In other
words, very costly disasters occur relatively often. Heavy tails imply that standard econometric tools which estimate conditional
mean dynamics may not be well suited to study the full impact of disasters on the macroeconomy.

As an alternative, we propose to use the quantile vector autoregression (QVAR) machinery summarized in Section 3. This allows
us to estimate the propagation of disaster shocks to the entire conditional distribution of the included endogenous variables. We can
thus estimate the tail effects of natural disasters on key macroeconomic aggregates.

To illustrate how a large natural disaster may affect aggregate economic outcomes, Fig. 3 plots the monthly CD series along with
real Industrial Production (IP) growth and CPI inflation around Hurricane Katrina. Immediately after the event, IP growth dropped
sharply by about two percent and inflation surged by almost 1.5 percent. These initial reactions were followed by a sharp rebound
f growth and a decline of inflation in subsequent months. The opposite responses of output and inflation immediately after the
isaster suggest that it initially acted as a supply shock to the U.S. economy. This is in line with the notion that natural disasters
ay lead to disruptions in supply chains and thus result in a temporary shortage of goods and services which drives up prices. The
8
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Fig. 1. Costly disaster series (CD). This figure plots financial losses in trillions of 2019 US dollars caused by natural disaster events in the U.S over the period
rom January 1980 through December 2019. The index is obtained from Ludvigson et al. (2020) and the terrorist attacks of September 2001 are dropped from

the sample.

Fig. 2. QQ-Plot of the costly disaster series. This figure compares the quantiles of the costly disaster series with the quantiles of a standard normal distribution.

subsequent rebound of economic activity against the backdrop of continued inflation pressures, in turn, suggests that disasters also
affect aggregate demand several months after the initial impact.

The identification of the effects of disaster shocks in Ludvigson et al. (2020) relies on the assumption that natural disasters are
enuinely exogenous events. Specifically, they adopt a recursive ordering in their VAR with the CD series ordered first, implying that
isasters affect the other variables contemporaneously but the opposite is not true. In our analysis, we adopt the same identification
cheme. In contrast to Ludvigson et al. (2020), however, and motivated by the heavy-tailedness of the disaster distribution, we

employ a model of the U.S. economy which explicitly allows for disasters to affect the quantiles of the endogenous variables
differently.

4.2. Model specification

To trace the economic effects of disasters in the QVAR framework, we rely on the same set of indicators as Ludvigson et al. (2020).
In addition to the CD index, which is ordered first, these are initial claims for unemployment insurance, monthly CPI inflation,
9
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Fig. 3. Macroeconomic indicators and the cost of Hurricane Katrina. This figure shows real industrial production growth and CPI inflation along with the
D index around Hurricane Katrina. The black line represents the CD index, while the red lines correspond to the real IP growth and inflation. The horizontal

lines correspond to the sample mean of real IP growth and inflation, respectively.

monthly real industrial production growth, the federal funds rate, and the measure of macroeconomic uncertainty constructed
y Jurado et al. (2015).11

We use six lags for the QVAR model. This is in line with Ludvigson et al. (2020) and is a common choice in the empirical
acroeconomics literature using monthly data.12 The model selection for regression quantiles, particularly in the context of multiple

variables and quantiles, requires additional research. To the best of our knowledge, there is no unified information criterion across
all equations and quantiles that we might utilize in our context. We discuss available criteria for a single quantile and equation
in the Online Appendix. Before we use the QVAR to analyze the distributional effects of natural disasters, we first ensure that the
model is stationary. The results are also given in the Online Appendix.

We next provide an in-sample specification test to evaluate the fit of the regression quantiles. As discussed by Engle and
Manganelli (2004), if 𝑞𝑋𝑖,𝑡

(𝜃𝑖,𝒁 𝑖,𝑡) in Eq. (5) is the true conditional quantile function, then Eq. (6) must hold. Equivalently, the
hit sequence {𝐼

(

𝑋𝑖,𝑡 < 𝑞𝑋𝑖,𝑡
(𝜃𝑖,𝒁 𝑖,𝑡)

)

−𝜃𝑖}, where 𝐼(⋅) is an indicator function, must be an i.i.d. mean zero process for any 𝜃𝑖 ∈ (0, 1).
Several alternative tests have been proposed to evaluate this condition (Kupiec, 1995; Christoffersen, 1998; Berkowitz et al., 2009).13

Here we adopt the test by Engle and Manganelli (2004). Let 𝜳 𝑖,𝑡 ∈ 𝑰 𝑖,𝑡 be a vector of past observations and {ℎ𝑖,𝑡(𝜃𝑖) =
(

𝑋𝑖,𝑡 < 𝑞𝑋𝑖,𝑡
(𝜃𝑖,𝒁 𝑖,𝑡)

)

− 𝜃𝑖} the hit sequence. Under the null hypothesis, ℎ𝑖,𝑡(𝜃𝑖) has zero mean and is uncorrelated with past
nformation. Under the alternative, the quantile function in Eq. (5) is a poor approximation of the unknown true conditional quantile

function (Gaglianone et al., 2011). Put differently, under the null the parameter vector 𝝅𝑖(𝜃𝑖) = [𝜈𝑖(𝜃𝑖), 𝜸𝑖(𝜃𝑖)′]′ is zero in the following
uxiliary regression

ℎ𝑖,𝑡(𝜃𝑖) = 𝜈𝑖(𝜃𝑖) + 𝜳 ′
𝑖,𝑡𝜸𝑖(𝜃𝑖) + 𝜉𝑖,𝑡(𝜃𝑖), 𝑡 = 𝑝 + 1,… , 𝑇 , (11)

where 𝜉𝑖,𝑡(𝜃𝑖) is a zero mean i.i.d. residual. We follow Engle and Sheppard (2001) and estimate Eq. (11) via least squares. This yields
𝝅̂𝑖(𝜃𝑖) with asymptotic covariance matrix 𝑽̂ 𝑖(𝜃𝑖). The test statistic is then given by

𝝅̂𝑖(𝜃𝑖)′𝑽̂ 𝑖(𝜃𝑖)−1𝝅̂𝑖(𝜃𝑖) ∼ 𝜒2
dim (𝝅𝑖(𝜃𝑖)), (12)

where 𝜒2
𝜏 is a chi-squared distribution with 𝜏 > 0 degrees of freedom.14 The implementation of the test requires a choice of the

ector 𝜳 𝑖,𝑡. We use 𝒁 𝑖,𝑡, which contains all 𝑝 lags of the endogenous variables 𝑿𝑡.15

We rely on our Bootstrap Algorithm 2 to compute the test statistic (12). In particular, we re-estimate model (5) for each bootstrap
sample, then construct ℎ̂(𝑏)𝑖,𝑡 , and finally run the least squares regression (11). We calculate 𝑽̂ 𝑖(𝜃𝑖) as the empirical variance–covariance
f the estimated parameters across bootstrap samples

{

𝝅̂(1)
𝑖 (𝜃𝑖),… , 𝝅̂(𝐵)

𝑖 (𝜃𝑖)
}

. We perform 𝐵 = 1000 bootstrap repetitions and use
he grid of quantile indices [0.05, 0.06,… , 0.95] as defined in (8). This choice of grid is standard in the literature, e.g. Koenker

(2005, Chapter 4.3) and Chernozhukov et al. (2017). The reason is that even with monthly data and a relatively large number of
observations as in our case, extreme right or left tail quantiles may not be estimated very precisely.

11 We thank Sydney Ludvigson for kindly sharing the CD series with us. The uncertainty index is available at: https://www.sydneyludvigson.com/data-and-
appendixes. All remaining series have been obtained from FRED and are seasonally adjusted, where applicable. We compute monthly growth rates as log
differences.

12 For instance Kilian and Lütkepohl (2017, section 2.6) and Ivanov and Kilian (2005) conclude that the lag order must be large enough to capture responses
of standard macroeconomic aggregates. Various empirical studies reviewed in Ivanov and Kilian (2005, Table 1) suggest at least a lag order of six for monthly
ata and two for quarterly data for impulse repose analysis. We provide robustness checks for lag ordersp = 3,9 and 12 in the Online Appendix. Our results
emain intact with alternative lag orders. A similar strategy is followed by Bakkensen and Barrage (2018), see their Online Appendix.
13 A detailed discussion of these tests and simulations to evaluate their relative performance in the dynamic regression quantile framework can be found

n Gaglianone et al. (2011).
14 This result derives directly from the properties of the regression quantile estimates 𝜷̂ 𝑖(𝜃𝑖) defined in Eq. (7) and discussed in Engle and Manganelli (2004),

as well as the standard properties of quadratic forms discussed in White (2001, Theorem 4.31).
15 Note that Gaglianone et al. (2011) suggest to use 𝜳 𝑖,𝑡 = 𝑞𝑋𝑖,𝑡

(𝜃𝑖 ,𝒁 𝑖,𝑡) instead. We follow their suggestion in a robustness check in the Online Appendix. The
results are essentially unchanged.
10
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Fig. 4. P-values of the dynamic quantile test: This figure provides 𝑝-values for the conditional quantile test provided in Eq. (12) for the grid of quantiles
𝜃𝑖 ∈ [0.05, 0.1,… , 0.95]. The test statistic is constructed using the bootstrap Algorithm 2.

Fig. 5. Matching the realizations with the distribution forecasts. Distributional forecasts of IP growth and CPI inflation following Hurricane Katrina.
he figure shows the evolution of the forecast distribution for IP growth and CPI inflation. The solid gray lines correspond to the quantiles
0.01, 0.02,… , 0.99] of forecasts. Forecasts are generated by Algorithm 1 which uses the grid of quantiles [0.25, 0.2578,… , 0.95] for the CD series

and [0.05, 0.06,… , 0.95] for the remaining variables.

The results are provided in Fig. 4. They show that the conditional quantile restriction of Eq. (6) cannot be rejected for almost
all quantiles and all variables. The exception is the left tail of the CD index which captures the disasters with the lowest economic
costs. The empirical density of the CD index is concentrated around zero, implying that while the series has a heavy right tail, it
has essentially no far left tail. Hence, to model the dynamics of disaster series, it is not necessary to consider the far left quantiles.16

In the following analysis, we thus truncate the grid of quantile indices for the CD index at [0.25, 0.2578,… , 0.95], whereas for the
remaining variables we use the standard grid [0.05, 0.06 … , 0.95]. As a result, both grids have an equal number of quantiles.

4.3. Evaluating the quantile function in-sample

We can evaluate the ability of our model to capture the observed dynamics of macroeconomic aggregates in the aftermath
of large disasters. To this end, we estimate the model and then use Algorithm 1 to recursively construct in-sample forecasts
𝑆 ,𝑙 =

{

𝑿(𝑠)
𝑡+𝑙 , 𝑠 = 1,… , 𝑆

}

, 𝑙 ≥ 1 using data up to August 2005, the month when hurricane Katrina hit the Gulf coast. We use
𝑆 = 10,000 samples. Given the forecasts at horizon 𝑙, we then calculate the empirical quantiles of the forecast distribution.

Fig. 5 displays these quantiles for IP growth and CPI inflation. We superimpose the conditional mean forecast, which we obtain
using a standard linear VAR also estimated using data through August 2005. The associated 95% confidence interval is obtained using

16 In unreported results, we see that the estimated conditional quantile function for the CD index for quantile indices below 𝜃 = 0.25 are muted.
11
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a standard residual-based bootstrap as in Gonçalves and Kilian (2004). Several results are noteworthy. First, industrial production
growth initially dropped sharply and then strongly recovered while inflation rose markedly just after hurricane Katrina hit and then
declined in subsequent months. Strikingly, these dynamics are not well captured by the conditional mean forecasts, shown as blue
dotted lines. Instead, the realized values coincide with the lowest predicted quantiles for IP growth and the highest quantiles for
inflation in the first month after the event. In subsequent months, the realizations are well matched by high predicted quantiles
of IP growth and lower quantiles for inflation. A similar observation can be made for CPI inflation on the right-hand side of the
igure. The realized inflation readings correspond to some of the highest (lowest) quantiles of the predictive distribution in the first

few months after the disaster. These preliminary results suggest that large disasters such as hurricane Katrina imply macroeconomic
ynamics that fall into the tails of the conditional forecast distribution.

4.4. Quantile impulse response analysis of natural disasters

In this section, we use the Quantile IRFs introduced in Section 3.5.1 to study the macroeconomic effects of natural disasters in
the U.S. for the sample period from 1980 to 2019. We rely on the recursive identification scheme captured in Eq. (4) and discussed
in Section 3. We scale the shock to 𝜅1 = 9 × 𝜎𝐶 𝐷, where 𝜎𝐶 𝐷 is the empirical standard deviation of the CD index ordered first in our

VAR. This roughly corresponds to the economic cost associated with hurricane Katrina. Our emphasis is thus on how the tails of
he forecast distribution evolve in response to very large disasters.

To assess the statistical significance of the shifts in the forecast distribution, we plot the quantile impulse response functions
𝜟̂𝑖,1(𝜃 , 𝑙) for the 1st, 5th, 50th, 95th and 99th quantile in Fig. 6. We construct the error bands using subsampling Algorithm 3 with
𝑛 = 10,000 repetitions. There are several noteworthy findings. First, while the bottom quantiles of the IP growth distribution (top
row) are significantly compressed immediately after the shock, they quickly revert back to their unconditional level. In contrast,
both the median and the top quantiles also initially drop but then strongly and significantly overshoot their initial level in the two
to six months after the disaster. Hence, while the conditional forecast distribution of IP growth is meaningfully shifted to the left
immediately following large disasters, there is a sizeable rebound effect of economic activity which subsequently shifts the growth
distribution to the right.

For inflation, the picture looks somewhat different. The bottom quantiles and the median significantly increase immediately after
the shock but then quickly recede. In contrast, the effect of the disaster shock is considerably more persistent in the top quantiles
f the predictive inflation distribution, suggesting that large disasters come with meaningful upside risks to inflation in the two to
ix months after the shock.

It is instructive to compare these quantile IRFs with those for the conditional mean implied by a standard linear VAR. To this end,
e estimate the linear VAR with the same number of lags 𝑝 = 6 and for a shock of the same magnitude. Specifically, we calculate

he following quantity 𝜟𝑖,1(𝑙) ≡ E (𝑋𝑖,𝑇+𝑙|𝑋1,𝑇+1 = 9𝜎𝐶 𝐷,𝑿′
𝑇 ,… ,𝑿′

𝑇−𝑝+1) − E (𝑋𝑖,𝑇+𝑙|𝑿′
𝑇 ,… ,𝑿′

𝑇−𝑝+1) for 𝑙 = 1,… , ℎ and 𝑖 = 1,… , 𝐾.
We construct confidence intervals using a standard residual-based bootstrap at the 1% significance level. Fig. 7 displays the IRFs for
real IP growth and CPI inflation. Both show qualitatively similar but quantitatively much more modest dynamics of the conditional

ean in response to a large disaster shock than the tail QIRFs provided in Fig. 6. We interpret this as evidence that the QVAR
ramework is better able to capture the full conditional distribution of macroeconomic dynamics following disaster shocks.

4.5. Moment impulse response analysis of natural disasters

The QIRFs reported in the previous section provide a granular account of the effects of natural disasters on the forecast
distribution of output and inflation. A convenient way to summarize this information is to compute the resulting moments of the
conditional forecast distributions with and without disaster shocks, as defined in Eq. (10). The results are provided in Fig. 8. We first
focus on the moments of the forecast distribution of IP growth, shown in the left column. The conditional mean sharply contracts
in the first month after the shock but then strongly rebounds and remains elevated for about six months. The conditional standard
deviation also increases markedly and remains significantly elevated for about six months. The conditional skewness of the predicted
IP growth distribution first responds negatively but then briefly moves into positive territory after about four months. The conditional
kurtosis only significantly increases in the first month after the disaster shock. Combined, these charts reiterate that conditional on
large disasters the forecast distribution of IP growth is initially shifted to the left before seeing a substantial rebound, while the
volatility of forecasts is elevated for several months after the disaster.

Turning to the corresponding moments for inflation in the right column, we see that the conditional mean of the predicted
inflation distribution is positive for about four months after the shock, while the conditional standard deviation initially drops and
hen remains elevated for several months. The conditional skewness of the forecast distribution for inflation is initially positive, but
hen turns negative after about half a year. Finally, as for IP growth the conditional kurtosis is only significantly higher in the first
onth after the shock. A key message that emerges from this exercise is that to fully capture the rich macroeconomic dynamics

ollowing natural disasters, one needs models that allow the entire distribution to shift, not only the mean.
Note that the unconditional mean, standard deviation, skewness and kurtosis of IP growth in our sample equal 0.15, 0.67, −1.16,

and 9.07, respectively. The same moments for CPI inflation are estimated to be 0.25, 0.29, −0.22, and 10.37. This allows us to
gauge the economic significance of the moment IRFS above. We see a sharp drop of the conditional mean of IP growth by about
−0.4% on impact, followed by a subsequent rebound of more than 0.5% when a larger disaster shock hits compared to a scenario
without such a shock. These responses are thus considerably larger than the unconditional mean of IP growth. For CPI inflation,
the 0.2% initial increase of the conditional mean subsequent to a disaster shock is also sizeable and of the same magnitude as its
unconditional mean.
12
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Fig. 6. QIRFs. Quantile impulse response functions for IP growth and CPI inflation as defined in Eq. (9) to a 9 × 𝜎𝐶 𝐷 disaster shock. The point estimates are
ased on Algorithm 1, which uses a grid of quantile indices [0.25, 0.2578,… , 0.95] for the CD index and [0.05, 0.06,… , 0.95] for the remaining variables. Confidence
ntervals are calculated via subsampling Algorithm 3 at the 1% significance level.

4.6. Discussion

The findings presented thus far suggest that natural disasters have a relatively short-lived but sizeable impact on the aggregate
.S. economy. In particular, large disasters meaningfully shift the conditional distribution of IP growth and CPI inflation. This may
e surprising in light of the fact that many natural disasters occur locally. That said, as discussed in Section 2, disasters may have

aggregate economic effects if they lead to a disruption of supply chains or hit sectors that are central to overall economic activity
through input–output linkages.

The largest disasters in our sample are hurricanes. Some of these made landfall in regions that are home to some important
ndustries. For example, according to the National Hurricane Center, hurricane Katrina had a major impact on Florida, Louisiana,
13
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Fig. 7. Linear VAR impulse response functions: Linear VAR impulse response functions for IP growth and CPI inflation to a 9 × 𝜎𝐶 𝐷 disaster shock as defined
in Section 4.4. Confidence intervals are calculated with the residual-based bootstrap at the 1% significance level.

Fig. 8. Moment impulse response functions: Moment impulse response functions for IP growth and CPI inflation to a 9 × 𝜎𝐶 𝐷 disaster shock, as defined
in Eq. (10). Calculations are based on Algorithm 1, which uses a grid of quantile indices [0.25, 0.2578,… , 0.95] for the CD index and [0.05, 0.06,… , 0.95] for the
remaining variables, see the discussion in Section 3.5.2. Confidence intervals are calculated via subsampling Algorithm 3 at the 1% significance level.
14
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Mississippi, and Alabama.17 As such, it significantly affected industrial production in the Gulf Coast region which is home to
mportant companies active in oil and gas extraction, industrial chemicals manufacturing, and petroleum refining.18 Moreover, the

hurricane was reported to have given rise to significantly higher natural gas prices due to its effects on gas production.19

Other major hurricanes primarily affected different U.S. regions of national economic importance. For example, Hurricane Sandy
severely impacted production in the Northeast in October 2012, resulting in a 0.4% decline of aggregate industrial production.20

The main effects were felt in the utilities, food, chemicals, computers and electronic products and transportation equipment sectors.
Finally, Hurricane Harvey, which made landfall on the Gulf Coast of Texas in August 2017, led to a decline of national industrial
production of 0.9% in that month as this region is home to important oil and gas extraction, petroleum refining, and petrochemical
manufacturing industries (Bayard et al., 2017).21

5. Scenario analysis

There is unequivocal evidence that global mean temperatures have been increasing as a result of heightened concentration of
reenhouse gases in the atmosphere. There is also widespread agreement among climate scientists that the frequency and intensity
f extreme weather events will increase in large parts of the world as global mean temperatures continue to rise (IPCC, 2023). In this

section, we use our QVAR framework to assess the potential macroeconomic outcomes associated with scenarios based on policies
hich have differential implications for the path of global carbon emissions and thus the carbon concentration in the atmosphere.

We take the following approach. First, we directly model the historical relationship between the atmospheric carbon concentra-
tion and natural disasters in the U.S. Second, we simulate the evolution of disasters over the next twenty years based on carbon
concentration levels under two policy scenarios entertained by the Network for the Greening of the Financial System (NGFS) and
study the implications for the conditional forecast distributions of IP growth and inflation. We now explain each of these steps in
turn.

5.1. Modeling the frequency and intensity of disasters

Climate scientists often rely on Integrated assessment models (IAMs) to simulate complex interactions between the economy, the
climate, and the environment, see the discussion in Section 2 and in the Online Appendix. Modeling these complex interactions is
beyond the scope of our paper. Instead, we take a simple but, in our view, plausible shortcut. Specifically, we use the Gamma-zero
istribution introduced in Monfort et al. (2017) to model the intensity of natural disasters as a function of the atmospheric carbon

concentration. In particular we assume

𝐶 𝐷𝑡|𝐸𝑡 ∼ 𝛾0(𝜆𝑡, 𝜇),
where 𝜆𝑡 > 0 for any 𝑡, 𝜇 > 0, and 𝐸𝑡 is the carbon concentration. We measure the global atmospheric carbon concentration using
the NOAA Global Monitoring Laboratory data.22

The Gamma-zero distribution is a combination of a Gamma and a Poisson distribution. Specifically, let 𝐶 𝐷𝑡|𝐸𝑡 ∼ 𝛾(𝜈𝑡, 𝜇) be a
amma distributed random variable with shape 𝜈𝑡 and scale 𝜇. Further assume that the shape 𝜈𝑡, which governs the number of
vents modeled with a Gamma distribution, itself follows a Poisson distribution

𝜈𝑡 ∼ (𝜆𝑡).

As shown by Monfort et al. (2017), these assumptions imply that the conditional first and second moment of the disaster distribution
are given by

E
(

𝐶 𝐷𝑡|𝐸𝑡
)

= 𝜇 𝜆𝑡,
and

Var
(

𝐶 𝐷𝑡|𝐸𝑡
)

= 2𝜇2𝜆𝑡.

To ensure that the conditional mean and variance of the costs of disaster distribution are both non-negative at all times, we model
𝑡 as a time-varying exponential function of the carbon concentration:

𝜆𝑡 = exp(𝛼 + 𝛽 𝐸𝑡).

17 See https://www.aoml.noaa.gov/hrd/hurdat/Data_Storm.html.
18 The Federal Reserve documented the effects of hurricane Katrina on these industries in September (https://www.federalreserve.gov/releases/g17/20050914/)

and October 2005 (https://www.federalreserve.gov/releases/g17/20051014/).
19 See https://www.minneapolisfed.org/article/2005/gasoline-prices-climb-in-response-to-hurricanes.
20 See the Federal Reserve statistical release of November 16, 2012: https://www.federalreserve.gov/releases/g17/20121116/.
21 See also the Federal Reserve statistical release in September 2017: https://www.federalreserve.gov/releases/g17/20170915/.
22 These data are available at https://doi.org/10.15138/9N0H-ZH07. They are reported in Micromols of carbon per mol of air.
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Fig. 9. Atmospheric carbon concentration. The plot shows the global average atmospheric carbon concentration observed since 1980 and projected under
the two scenarios ‘‘Current Policies’’ and ‘‘Net Zero 2050’’. The carbon concentration data are measured as micromols of CO2 per mol of air and are obtained
from the NOAA Global Monitoring Laboratory. The scenarios are provided by the Network of Central Banks and Supervisors for Greening the Financial System
(NGFS).

As a result, the mean and variance of disasters are time-varying and depend on the evolution of the carbon concentration.23

The two conditional moments can thus be used to estimate the parameters (𝛼 , 𝛽 , 𝜇). Specifically, we minimize the following sum of
squared deviations (SSD):24

𝑇
∑

𝑡=1

(

𝐶 𝐷𝑡 − 𝜇 𝜆𝑡
)2 +

𝑇
∑

𝑡=1

(

[𝐶 𝐷𝑡 − 𝜇 𝜆𝑡]2 − 2𝜇2𝜆𝑡
)2 .

We obtain the following parameter estimates, with heteroskedasticity robust standard errors in parentheses: 𝜇̂ = 0.028 (0.007),
̂ = −12.14 (3.83) and 𝛽 = 0.027 (0.01) and SSD=0.096. To check that these estimated parameters capture the moments of the
observed disaster distribution well, we use them to simulate the CD series 1000 times and then compare the mean and the tails
of the observed and the simulated CD index. The mean and 90th, 95th, and 99th quantiles of the simulated data are given by
0.004, 0.007, 0.029, and 0.080, respectively. The corresponding sample counterparts in the observed CD index take on the values
0.004, 0.007, 0.015, and 0.074, respectively. Hence, the model represents the properties of the actual CD distribution quite well.

5.2. Simulating natural disasters

Using these estimated parameters, we next simulate hypothetical future realizations of the CD index conditional on different
aths for the global carbon concentration. Specifically, we rely on two key scenarios for the atmospheric carbon concentration
hat have been studied by the NGFS, ‘‘Current Policies’’ and ‘‘Net Zero 2050’’.25 The Current Policies scenario assumes that only

currently implemented policies are preserved, resulting in no substantial decreases of carbon emissions. The Net Zero 2050 scenario,
in contrast, is associated with stringent climate policies and innovation so that global CO2 emissions reach net zero around 2050
and global warming is limited to 1.5 ◦C. Fig. 9 plots the evolution of atmospheric carbon concentration since 1980 and appends the
assumed evolution under the two scenarios.26 As one can see, the carbon concentration continues to rise sharply under the Current
Policies Scenario, but starts to decline in the 2030s under the Net Zero 2050 scenario.

Given our model for the disaster intensity discussed above, these assumed carbon concentration pathways give rise to different
uture disaster distributions. Fig. 10 displays a representative draw extending the observed sample of CD realizations by twenty

years of simulated outcomes for the CD index. The chart shows that the frequency and magnitude of disasters is substantially higher
under the Current Policies scenario than under the Net Zero 2050 scenario.

To study the impact of natural disasters on the conditional forecast distributions of IP growth and CPI inflation under the two
cenarios, we perform the following exercise. First, for each scenario we use the projected evolution of the atmospheric carbon
oncentration 𝐸𝑇+1,… , 𝐸𝑇+ℎ over a twenty-year horizon (ℎ = 240) starting in January 2020. We use the estimated parameters
̂ , 𝛽 , 𝜇̂ to simulate 𝑆 = 1000 draws {𝐶 𝐷(𝑠)

𝑇+1, … , 𝐶 𝐷(𝑠)
𝑇+ℎ, 𝑠 = 1,… , 𝑆} from the Gamma-zero distribution which characterizes disasters

onditional on the carbon concentration. For each draw 𝑠, we annualize the simulated CD series and compute densities for the
forecast period from 2020 through the end of 2039. We then average these densities across the 1000 draws.

23 Note that we abstract from climate adaptation policies which in practice may affect the relationship between the carbon concentration and the economic
osts of natural disasters.
24 To verify the validity of our estimation method, we first performed a Monte Carlo exercise using the following parameters: 𝑇 = 480, 𝐸𝑡 = 334 + 0.15𝑡+ 2𝜀𝐸𝑡

,
𝜀𝐸𝑡

∼ N(0, 1), 𝜇 = 0.2, 𝛼 = −12, and 𝛽 = 0.05. With this data generating process we reestimate the parameters 1000 times. The empirical means and standard
deviation of the Monte Carlo estimates are 𝛼̂ = −11.963(.222), 𝛽 = .05(.0004), and 𝜇̂ = .198(.025). Hence, our estimation approach is well suited to estimate the
parameters of the Gamma-zero distribution.

25 All scenarios considered by the NGFS are summarized here: https://www.ngfs.net/ngfs-scenarios-portal/. These scenarios are based on the most current
vintage of the integrated assessment model REMIND-MAgPIE 3.0–4.4 developed by the Potsdam Institute for Climate Impact Research. The model documentation
is provided here: https://www.iamcdocumentation.eu/index.php/Model_Documentation_-_REMIND-MAgPIE.

26 We thank Oliver Richters for sharing these data with us.
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Fig. 10. Representative Draws of the Simulated CD Series. The plot shows the observed evolution of the CD index from 1980 through 2019, extended by
epresentative draws under the two scenarios ‘‘Current Policies’’ and ‘‘Net Zero 2050’’. The cost of disaster series follows a Gamma-zero distribution which
epends on the global average carbon concentration, see Section 5.1. The scenarios are provided by the Network of Central Banks and Supervisors for Greening
he Financial System (NGFS).

Fig. 11. Kernel Density Estimates of Annualized Costs of Disasters under Two NGFS Scenarios. This figures shows average kernel density estimates of
the annualized CD index conditional on the two NGFS scenarios ‘‘Current Policies’’ and ‘‘Net-Zero 2050’’. We superimpose the average of the annualized CD
realizations for the period from 1980 through 2019.

The result is shown in Fig. 11. We superimpose the corresponding means as well as the average of the CD index over the sample
from 1980 through 2019 as vertical lines. The chart suggests that under both scenarios, the distribution of disaster-related economic
costs will be much more heavily tilted to the upside compared to the historically observed average disaster costs. Moreover, the
Current Policies scenario generates a considerably heavier right tail for the cost of disasters than the Net-zero 2050 scenario.

Given the simulated costs of disasters over the next twenty years, in the second step we generate conditional distributions for the
acroeconomic aggregates of interest. Specifically, for each draw

{

𝐶 𝐷(𝑠)
𝑇+1,… , 𝐶 𝐷(𝑠)

𝑇+240

}

, we use Algorithm 1 to generate 𝑆̃ = 1000
new draws for each remaining endogenous variable in our QVAR for each of the 𝑙 = 1,… , 240 horizons. Based on these simulated
paths, we then compute the conditional moments for each horizon 𝑇 +𝑙 across draws

{

𝐼 𝑃 (𝑠̃)
𝑇+𝑙

}

and
{

𝐶 𝑃 𝐼 (𝑠̃)𝑇+𝑙

}

, where 𝑠̃ = 1,… , 1000.
We calculate kernel densities of these conditional moments across forecast horizons 𝑇 + 𝑙 for 𝑙 = 1,… , 240. We repeat this exercise
for each draw 𝑠 = 1,… , 𝑆 of the simulated CD index. In the end, we average the 𝑆 = 1000 kernel densities for each moment. The
purpose of this exercise is to trace the distribution of the moments of IP growth and CPI inflation conditional on disaster paths
under the two scenarios, taking into account the randomness of the disaster outcomes.

It is instructive to compare these simulated conditional moments to their historical counterparts. To this end, we compute
the conditional moments of IP growth and CPI inflation over the 20-year period from 2000 through 2019. Specifically, we use
Algorithm 1 to draw 𝑆̃ = 1000 paths for the remaining endogenous variables in our QVAR for each month in the sample period
anuary 2000 through December 2019. Then, we calculate the first four moments for IP growth and CPI inflation and compute
heir kernel densities for each of the 240 months. We superimpose these densities on the simulated densities of conditional moments
nder the two scenarios.

Fig. 12 provides the conditional moments of the counterfactual distributions along with their historical counterparts. The
onditional mean of the IP growth distribution only minimally differs across the two scenarios. However, both are markedly shifted

to the left compared to the last twenty years. The conditional standard deviation of IP growth is substantially tilted upwards under
both scenarios compared to historical outcomes, but more strongly so under Current Policies than under the Net-Zero 2050 scenario.
The skewness of the IP growth distribution also has substantially more mass at negative values under both scenarios relative to the
past 20 years. The kurtosis, in turn, has a somewhat longer right tail under the two scenarios. Combined, these results suggest that
17
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Fig. 12. Kernel Density Estimates of the Conditional Moments of Counterfactual Distributions under two NGFS Scenarios. This figure shows averages
of the kernel density estimates of the moments for IP growth (top panel) and CPI inflation (bottom panel) under two NGFS scenarios: ‘‘Current Policies’’ and
‘‘Net-Zero 2050’’. The scenarios and procedure are described in Section 5.2.

the conditional distribution of real output growth will be considerably more tilted towards negative values and be more volatile in
he future compared to recent experiences. That said, climate policies achieving net zero global carbon emissions by 2050 would
onsiderably mitigate these distributional shifts.

Turning to CPI inflation in the bottom four panels of Fig. 12, we observe that both the conditional mean and the conditional
olatility have substantially heavier right tails under the two scenarios as compared to the historical evidence. Under Current

Policies, however, these distributional shifts are again more sizeable. The distributions of the conditional skewness and kurtosis
of CPI inflation are not meaningfully different under the two scenarios, but feature somewhat longer right and left tails than the
historical distribution.

In sum, our evidence suggests that the increased frequency and severity of natural disasters imply substantially more mass on
lower growth and higher inflation outcomes and considerably higher macroeconomic volatility. This is particularly true when carbon
missions continue to rise as in the Current Policies scenario.

6. Conclusion

This paper has analyzed the distributional impact of disasters on real economic activity and inflation in a Quantile VAR
ramework. Natural disasters are followed by significant shifts in the forecast distribution, especially in the tails. Initially, there
s substantial downside risk to real activity, but this is followed by a sizeable rebound. For inflation, upside risks dominate. Disaster
hocks result in persistent increases of the conditional volatility and skewness of output and inflation. Our findings highlight that
atural disasters significantly increase macroeconomic vulnerability, making it more difficult for policy makers to stabilize output
18
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and inflation in the presence of frequent large natural disasters. Our results also show that to fully capture the economic effects
of natural disasters requires a complete account of the conditional distribution of key macroeconomic aggregates in response to
physical climate risk events. Arguably, this should have important implications for calculations of the social cost of carbon and the
calibration of climate policies. Both depend on the estimated damages from extreme weather events associated with climate change.

hile it is beyond the scope of our paper to incorporate tail risks in such calculations, it appears to be an important avenue for
uture research.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2024.105914.
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