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We propose regression-based estimators for beta representations of dynamic asset pricing
models with an affine pricing kernel specification. We allow for state variables that are
cross-sectional pricing factors, forecasting variables for the price of risk, and factors that
are both. The estimators explicitly allow for time-varying prices of risk, time-varying
betas, and serially dependent pricing factors. Our approach nests the Fama-MacBeth two-
pass estimator as a special case. We provide asymptotic multistage standard errors
necessary to conduct inference for asset pricing tests. We illustrate our new estimators in
an application to the joint pricing of stocks and bonds. The application features strongly
time-varying, highly significant prices of risk that are found to be quantitatively more
important than time-varying betas in reducing pricing errors.
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1. Introduction

Overwhelming evidence exists that risk premiums vary
over time (Campbell and Shiller, 1988; Cochrane, 2011).
Yet, widely used empirical asset pricing methods such as
Fama and MacBeth (1973) two-pass regressions rely on the
assumption that prices of risk are constant.

This paper proposes regression-based estimators for
dynamic asset pricing models (DAPMs) with time-varying
rburgh, for a number of hel
te, Darrell Duffie, Robert En
ht, seminar participants at
ür Socialpolitik for helpful c
Asset Pricing meeting. Dan
ose of the authors and do no

rian), richard.crump@ny.frb.
prices of risk. The estimators and associated standard
errors are computationally as simple as Fama-MacBeth
regressions, but they explicitly provide estimates of time-
varying prices of risk, as well as estimates of the associated
state variable dynamics. Our model combines key assump-
tions of the dynamic asset pricing models from fixed
income applications with the computational ease of
Fama-MacBeth regressions that are popular in empirical
equity market research. The setup can also be viewed as a
pful suggestions that substantially improved the paper. We would like to
gle, Arturo Estrella, Andreas Fuster, Eric Ghysels, Benjamin Mills, Monika
the Federal Reserve Bank of New York, the National Bureau of Economic
omments and discussions. A special thanks goes to Wayne Ferson for his
iel Green, Ariel Zucker, and Benjamin Mills provided excellent research
t necessarily represent those of the Federal Reserve Bank of New York or

org (R.K. Crump), emanuel.moench@ny.frb.org (E. Moench).

www.sciencedirect.com/science/journal/0304405X
www.elsevier.com/locate/jfec
http://dx.doi.org/10.1016/j.jfineco.2015.07.004
http://dx.doi.org/10.1016/j.jfineco.2015.07.004
http://dx.doi.org/10.1016/j.jfineco.2015.07.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2015.07.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2015.07.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2015.07.004&domain=pdf
mailto:tobias.adrian@ny.frb.org
mailto:richard.crump@ny.frb.org
mailto:emanuel.moench@ny.frb.org
http://dx.doi.org/10.1016/j.jfineco.2015.07.004


1 For regression-based approaches to term structure models featur-
ing an exponentially affine pricing kernel, see Adrian, Crump, and
Moench (2013) and Abrahams, Adrian, Crump, and Moench (2014).

T. Adrian et al. / Journal of Financial Economics 118 (2015) 211–244212
reduced form representation of dynamic macro-finance
models with time-varying prices of risk.

We distinguish three different types of aggregate
state variables: risk factors, price of risk factors, and
factors that are both. By risk factors, we refer to variables
that are significant factors for the cross section of asset
returns, i.e. they have nonzero betas. By price of risk
factors, we refer to variables that significantly forecast
the time series variation of excess returns but do not
necessarily have nonzero betas. Prices of risk are
assumed to be affine functions of price of risk factors.
We show that by introducing this risk price specification
into generic asset pricing models, one can derive simple
regression-based estimators for all model parameters
that are consistent and asymptotically normal under
mild conditions.

Our baseline estimator is a three-step regression that
can be described as follows. In the first step, shocks to the
state variables are obtained from a time series vector
autoregression (VAR). In the second step, asset returns
are regressed in the time series on lagged price of risk
factors and the contemporaneous innovations to the cross
sectional pricing factors, generating predictive slopes and
risk betas for each test asset. In the third step, price of risk
parameters are obtained by regressing the constant and
the predictive slopes from the time series regression on
the betas cross-sectionally. We give asymptotic variance
formulas that allow for conditional heteroskedasticity and
correct for the additional estimation uncertainty arising
from using generated regressors.

We show that this three-step estimator coincides with
the Fama-MacBeth estimator when two conditions are
met. First, state variables have to be uncorrelated across
time. Second, prices of risk have to be constant. Our
approach can thus be viewed as a dynamic version of the
Fama-MacBeth estimator, nesting the popular uncondi-
tional estimator as a special case.

We also introduce an additional (quasi-) maximum
likelihood estimator (QMLE). This estimator is replacing
the third regression step with a simple eigenvalue decom-
position. The QMLE is asymptotically equivalent to the
three step regression estimator even in the case of condi-
tional heteroskedasticity in the return errors. We show
that in our model generalized method of moments (GMM)
and minimum distance (MD) estimation are exactly
equivalent and that the QMLE is a special case of this
more general class of estimation approaches for certain
choices of weighting matrix.

While our main results are extensions of classic results
in the cross-sectional pricing literature to a dynamic
setting, we provide new interpretations of results in the
model when prices of risk are constant. For example, the
equivalence between GMM and MD estimation implies
that the cross sectional T2 statistic of Shanken (1985) could
be directly interpreted as a J-test for the moment restric-
tions of the static model.

We also extend the three-step regression estimator to
the case where betas and the parameters in the vector
autoregression of the state variables are time-varying. We
assume that these parameters evolve smoothly over time
and estimate them using a kernel regression approach
pioneered by Robinson (1989). Kernel regressions have the
appealing feature of nesting least squares rolling window
regressions which are often used in the empirical litera-
ture (see, for example, Fama and French, 1997; Lewellen
and Nagel, 2006; among many others). In our implemen-
tation, however, we use a Gaussian kernel estimator with
data-driven bandwidth choice following Ang and
Kristensen (2012).

The affine price of risk specification we use closely
resembles affine term structure models.1 Our approach
thus lends itself to asset pricing applications across differ-
ent asset classes. We present an empirical application for
the cross section of size-sorted equity portfolios and
maturity-sorted Treasury portfolios. We show that a par-
simonious model with two pricing factors, two price of
risk factors, and one factor that serves both roles fits this
cross section of test assets very well on average, while, at
the same time, giving rise to strongly significant time
variation in risk premiums. We further find that allowing
for time variation in prices of risk is more important than
modeling time variation in factor risk exposures in terms
of minimizing squared pricing errors of the model. In our
application, traditional estimation approaches such as the
one by Fama and MacBeth (1973) and Ferson and Harvey
(1991) imply substantially larger pricing errors than the
estimators we propose.

The remainder of the paper is organized as follows.
Section 2 provides a discussion of the contribution of this
paper to the existing literature. We present the dynamic
asset pricing model in Section 3. We discuss estimation
and inference when betas are assumed to be constant in
Section 4. In Section 4.1, we formally present the link of
the dynamic asset pricing estimator to the static Fama-
MacBeth estimator, and we explain the contributions of
our results to the existing literature in detail. In Section 5,
we derive the corresponding estimator under the assump-
tion that betas vary over time. We illustrate our estimators
in an empirical application in Section 6. Section 7
concludes.
2. Related literature

Our approach can be seen as a generalization of the
static Fama and MacBeth (1973) cross sectional asset
pricing approach to dynamic asset pricing models. The
empirical applications of the static Fama-MacBeth
approach are too numerous to list, but some of the seminal
works are Chen, Roll, and Ross (1986) and Fama and
French (1992).

Some previous authors have extended the Fama-
MacBeth approach to conditional asset pricing models.
Ferson and Harvey (1991) use period-by-period Fama-
MacBeth regressions to obtain estimates of time-varying
market prices of risk, which they then regress on lagged
conditioning variables. They find evidence for predict-
able variation in prices of risk and associate most of the



2 Variables which predict excess returns but are not contempora-
neously correlated with excess returns are sometimes referred to as
“unspanned” factors. For applications to affine term structure models
with unspanned factors see, for example, Joslin, Priebsch, and Singleton
(2012) or Adrian, Crump, and Moench (2013).
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predictable variation in stock returns to time variation in
risk compensation instead of time variation in betas. Our
estimation approach generalizes the one used in Ferson
and Harvey (1991) by allowing for estimation in the
presence of serially correlated pricing factors and expli-
citly incorporating time variation of prices of risk. In
addition, we provide asymptotic standard errors for all
parameters of the model taking into account the uncer-
tainty generated at each step of the estimation.
Jagannathan and Wang (1996), Lettau and Ludvigson
(2001), and others have used the Fama-MacBeth tech-
nology to estimate scaled factor models. The beta repre-
sentations of such models are nested in our more
general framework. Moreover, in contrast to our pro-
posed estimators, the scaled factor approaches typically
do not explicitly provide estimates for the price of risk
parameters and the number of parameters grows quickly
with the number of factors.

Our paper is further related to Balduzzi and Robotti
(2010), who estimate time-varying risk premiums for
maximum-correlation portfolios, i.e., portfolios result-
ing from the projection of a candidate pricing kernel on
the set of test assets. Moreover, Gagliardini, Ossola, and
Scaillet (2014) and Chordia, Goyal, and Shanken (2013)
present alternative estimation approaches for models
with time-varying risk premiums using Fama-MacBeth-
type estimators when both the number of assets and
the number of time series observations tend to infinity.
Ang, Liu, and Schwarz (2010) study the implications for
efficiency of using individual stocks versus portfolios in
estimating cross-sectional pricing models. Finally,
another strand of the literature investigates the impli-
cations of model misspecification in cross sectional
asset pricing models. For example, Kan, Robotti, and
Shanken (2013) derive the asymptotic distribution of
the cross-sectional R2 and develop model comparison
tests which accommodate model misspecification.
Here, instead, we assume that the model is correctly
specified.

Our empirical application is closest to Ferson and
Harvey (1991) and Campbell (1996), who use similar test
assets and similar pricing factors in models with time-
varying and constant prices of risk, respectively. A number
of recent papers estimate dynamic pricing kernels for the
cross section of stocks and bonds (see, for example,
Mamaysky, 2002; Bekaert, Engstrom, and Grenadier,
2010; Lettau and Wachter, 2011; Ang and Ulrich, 2012;
and Koijen, Lustig, and van Nieuwerburgh, 2013). What
distinguishes our approach from that literature is the
regression-based estimation methodology, which is simple
to implement, is computationally robust, and allows for
standard specification tests. We show that our empirical
application features good pricing properties across stocks
and bonds and that it implies notable time variation of
expected returns associated with highly significant
dynamic price of risk parameters. Moreover, the dynamic
asset pricing model that we estimate yields substantially
smaller mean squared pricing errors than several alter-
native models with constant prices of risk.

Some prior literature on conditional factor pricing
models has assumed that betas are (linear) functions of
observable variables, see, for example, Shanken (1990),
Ferson and Harvey (1999), and, recently, Gagliardini,
Ossola, and Scaillet (2014) and Chordia, Goyal, and
Shanken (2013). A drawback to this approach is that it
requires the correct specification for the functional form of
the betas. As pointed out by Ghysels (1998) and Harvey
(2001), models with misspecified betas often feature
larger pricing errors than models with constant betas. In
contrast, the kernel estimator that we use imposes less
structure than assuming a specific functional form for the
parameters and, therefore, is likely more robust to mis-
specification. Moreover, we show that our Gaussian kernel
estimator yields smaller pricing errors than simple rolling
window regressions for both specifications with constant
and time-varying prices of risk.

We provide a further comparison of our results to
the existing literature throughout the remainder of
the paper.

3. Pricing kernel and return generating process

Before describing the model, it is convenient to intro-
duce the following notations that are used throughout the
paper. The symbol � represents the Kronecker product;
vec �ð Þ, the vectorization operator. Im and ιn denote the
m�m identity matrix and a n� 1 column vector of ones,
respectively. Moreover, let Γ1 Γ2½ � be the matrix formed
by appending the columns of the matrix Γ2 to the columns
of the matrix Γ1. Finally, throughout the paper, equalities
involving conditional expectations are understood to hold
almost surely.

We assume that systematic risk in the economy is
captured by a K � 1 vector of state variables Xt that follow
a stationary vector autoregression:

Xtþ1 ¼ μþΦXtþvtþ1; t ¼ 0;…; T�1; ð1Þ
with initial condition X0. The dynamics of these state
variables can be assumed to be generated by an equili-
brium model of the macroeconomy.

The state variables can be risk factors, price of risk
factors, or both. By risk factors, we refer to variables that
are significant factors for the cross section. By price of risk
factors, we refer to variables that significantly forecast the
time variation of excess returns.2 While some state vari-
ables act as both price of risk and risk factors, many
commonly used state variables act exclusively as one or
the other. This setup thus nests that of Campbell (1996),
who argues that innovations in variables that have been
shown to forecast stock returns should be used in cross-
sectional asset pricing studies.

As a consequence, we partition the state variables
into three categories: X1;tARK1 : risk factor only,
X2;tARK2 : risk and price of risk factor, and X3;tARK3 :
price of risk factor only. In Section 6 we use all three
types of factors in an application investigating the cross
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section of equity and bond returns. For simplicity of
notation, we define

Ct ¼
X1;t

X2;t

" #
; Ft ¼

X2;t

X3;t

" #
; ut ¼

v1;t
v2;t

" #
; ð2Þ

where Ct is for cross section and Ft is for forecasting. Let
KC ¼ K1þK2, KF ¼ K2þK3, and K ¼ K1þK2þK3. We
assume that

E vtþ1
��F t

� �¼ 0; V vtþ1
��F t

� �¼Σv;t ; ð3Þ
where F t denotes the information set at time t. We
denote holding period returns in excess of the risk free
rate of asset i by Ri;tþ1. We assume the existence of a
pricing kernel Mtþ1 such that

E Mtþ1Ri;tþ1
��F t

� �¼ 0: ð4Þ
Moreover, we assume that the pricing kernel has the
linear form

Mtþ1�E Mtþ1
��F t

� �
E Mtþ1

��F t
� � ¼ �λ0tΣ

�1=2
u;t utþ1; ð5Þ

where λt is the KC � 1 vector of period t prices of risk and
where the KC � KC matrix Σu;t is the conditional variance
of utþ1. It is important to point out that the above form
for the pricing kernel incorporates that the covariance
C Ri;tþ1; v3;tþ1

��F t
� �¼ 0 for all t. The same restriction is

imposed in term structure models that feature
unspanned factors.

As in Duffee (2002), we assume that prices of risk are
affine functions of the price of risk factors Ft, so that

λt ¼Σ �1=2
u;t λ0þΛ1Ft

� �
; ð6Þ

where λ0 is a KC � 1 vector, Λ1 is a KC � KF matrix, and
Λ¼ λ0 Λ1

� �
has full row rank. We then find the following

beta representation of expected returns:

E Ri;tþ1
��F t

� �¼ �C½Mtþ1;Ri;tþ1jF t �
E Mtþ1

��F t
� �

¼ λ0tΣ
�1=2
u;t C utþ1;Ri;tþ1jF t

� �
¼ λ0þΛ1Ft
� �0Σ�1

u;t C Ctþ1;Ri;tþ1jF t
� �

: ð7Þ

Thus,

E Ri;tþ1
��F t

� �¼ β0
i;t λ0þΛ1Ft
� �

; ð8Þ
where βi;t is a (time-varying) KC-dimensional exposure
vector,

βi;t ¼Σ�1
u;t C Ctþ1;Ri;tþ1jF t

� � ð9Þ
We can then decompose excess returns into an expected
and an unexpected component:

Ri;tþ1 ¼ β0
i;t λ0þΛ1Ft
� �þ Ri;tþ1�E Ri;tþ1

��F t
� �� �

: ð10Þ
The unexpected excess return Ri;tþ1�E Ri;tþ1jF t

� �
can be

further decomposed into a component that is condition-
ally correlated with the innovations of the risk factors,
utþ1 ¼ Ctþ1�E Ctþ1jF t

� �
, and a return pricing error ei;tþ1

that is conditionally orthogonal to the risk factor innova-
tions:

Ri;tþ1�E Ri;tþ1jF t
� �¼ γ0i;t Ctþ1�E Ctþ1jF t

� �� �
þei;tþ1 ¼ γ0i;tutþ1þei;tþ1: ð11Þ
By definition of βi;t ;

γi;t ¼Σ�1
u;t C Ctþ1;Ri;tþ1

��F t
� �¼ βi;t ; ð12Þ

so that

Ri;tþ1 ¼ β0
i;t λ0þΛ1Ft
� �þβ0

i;tutþ1þei;tþ1: ð13Þ

The excess returns, Ri;tþ1, thus depend on the expected
excess return, β0

i;t λ0þΛ1Ft
� �

, the component that is con-
ditionally correlated with the innovations to the risk
factors, β0

i;tutþ1, and a return pricing error, ei;tþ1, that is
conditionally orthogonal to the risk factor innovations.
Therefore, the innovations to the pricing factors Ct capture
systematic risk exposure, and the levels of the price of risk
factors Ft are forecasting variables.

Previous approaches have been taken to model the
time variation in risk premiums in equity returns (for
example, in Gibbons and Ferson, 1985; Campbell, 1987;
Ferson and Harvey, 1991; Lettau and Ludvigson, 2001;
among others). However, most, if not all, of these
approaches can be viewed as special cases of our more
general framework which has been derived from first
principles. Affine prices of risk are also commonly used
in the fixed income literature, see e.g., Duffee (2002), Dai
and Singleton (2002), or Ang and Piazzesi (2003).

The system of equations (13) for i¼ 1;…;N embeds the
no-arbitrage restrictions that were derived from the form of
the pricing kernel introduced in Eq. (5). Relative to a see-
mingly unrelated regressions (SUR) model in which
Ri;tþ1 ¼ ai;tþci;tFtþβ0

i;tutþ1þei;tþ1, the assumption of no-
arbitrage implies ai;t ¼ β0

i;tλ0 and ci;t ¼ β0
i;tΛ1. These are

reduced rank restrictions resulting in a smaller number of
parameters to estimate. To the extent that the model is well
specified, then the parameter restrictions imposed by no-
arbitrage help in increasing the predictive accuracy for the
entire cross-section of excess returns. Hence, in our dynamic
asset pricing model, a clear connection exists between the
cross-sectional pricing performance and the predictive ability
of a given set of model factors.

Standard, static cross-sectional asset pricing models
make two additional assumptions: Λ1 ¼ 0 in Eq. (13), and
Φ¼ 0 in Eq. (1) (see the reviews by Campbell, Lo, and
MacKinlay, 1997 and Cochrane, 2005). We consider these
special cases in the following sections. However, the main
contribution of this paper is to study the dynamic case in
which Φa0 and Λ1a0.

While the focus of this paper is the estimation of the beta
representation of dynamic asset pricing models, an extensive
literature estimates the stochastic discount factor (SDF) repre-
sentation using GMM (Hansen, 1982). In that literature, the
expression E Mtþ1Ri;tþ1

��F t
� �¼ 0 is estimated directly (see

Harvey, 1989, 1991). Singleton (2006) provides an overview of
dynamic asset pricing estimators, Nagel and Singleton (2011)
provide a GMM estimator with an optimal weighting matrix,
and Roussanov (2014) proposes a nonparametric approach to
estimating the SDF model.

4. Estimation with constant betas

In this section, we assume that βi;t ¼ βi for all i and t,
and we analyze an extension of the model with time-
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varying βi;t in Section 5. We can then stack this model as

R¼ Bλ0ι0T þBΛ1F � þBUþE ð14Þ
and

X ¼ μþΦX� þV ; ð15Þ
where R¼ R1⋯RT½ � is N� T with Rt ¼ R1;t ;…;RN;t

� �0,
F � ¼ F0⋯FT�1½ � is KF � T , U ¼ u1⋯uT½ � is KC � T ,
E¼ e1⋯eT½ � is N � T with et ¼ e1;t ;…; eN;t

� �0, X ¼ X1⋯XT½ �
is K� T, and V ¼ v1⋯vT½ � is K� T. Hereafter, we assume that
NZKC . The parameters of the return equation are the
stacked risk exposures B, which is a N � KC matrix with
rows composed of βi:1r irN

� �
and the prices of risk, Λ.

We can nest the model in the SUR model,

R¼ A0ι0T þA1F � þBUþE¼ A ~ZþE; ð16Þ
where A is a N � ðKCþKFþ1Þ matrix, ~Z ¼ ιT F 0� U0� �0 is of
dimension ðKCþKFþ1Þ � T , and

A0 ¼ Bλ0; A1 ¼ BΛ1; A¼ A0 A1 B½ �: ð17Þ
In practice, we do not observe U so that we replace it
with the residuals from OLS estimation of the VAR. The
asymptotic variance formulas we provide in Theorem 1
incorporate the additional estimation uncertainty gen-
erated by replacing U with Û . In Appendix A, we provide
explicit instructions on how to construct estimators and
their associated standard errors. In Appendix B, we
discuss how to impose linear restrictions on the para-
meters B and Λ and conduct inference on these
restricted estimators. Here we focus on developing
intuition for the form of the estimators and discussing
their properties.

Let Ẑ ¼ ιT F 0� Û
0h i0

and Âols ¼ RẐ
0
Ẑ Ẑ

0	 
�1
, and parti-

tion the estimator Âols as Â0;ols, Â1;ols, and B̂ols, respectively,
with associated heteroskedasticity-robust variance matrix
estimator V̂ rob [so that V̂ rob-pVrob and

ffiffiffi
T

p
vec Âols�A
	 
	 


-dN 0;Vrobð Þ].
Given this parameterization, two natural approaches

can be taken to estimating the parameters B, λ0, and Λ1.
The first is an indirect approach based on backing out λ0
and Λ1 via

λ0 ¼ B0WB
� ��1B0WA0; Λ1 ¼ B0WB

� ��1B0WA1; ð18Þ
for some positive-definite weight matrix W.3 WhenW ¼ IN
this produces the regression-based counterpart to Eq. (18)

λ̂0;ols ¼ B̂
0
olsB̂ols

	 
�1
B̂
0
olsÂ0;ols; Λ̂1;ols ¼ B̂

0
olsB̂ols

	 
�1
B̂
0
olsÂ1;ols:

ð19Þ
We could consider alternative estimators that use data-
dependent weight matrices, but we prefer this formulation
in conjunction with heteroskedasticity-robust standard
errors to avoid taking a stance on the exact form of the
variance matrix of the return innovations.
3 Here we assume that B is of full-column rank and is consequently
strongly identified. For cases in which B could be weakly identified see
Kleibergen (2009), Burnside (2010), Kleibergen and Zhan (2013), and
Burnside (2011). In cases of weak identification, the robust test statistics
of Kleibergen (2009) could be generalized to our setting. For weak
identification robust inference in an SDF representation setting, see
Gospodinov, Kan, and Robotti (2012).
The expressions in Eq. (19) can be interpreted as a
three-step estimator in the following way. In the first
step, shocks to the state variables are obtained from a
time series vector autoregression. In the second step,
asset returns are regressed in the time series on lagged
price of risk factors and the contemporaneous innova-
tions to the cross-sectional pricing factors, generating
predictive slopes and risk betas for each test asset. In
the third step, price of risk parameters are obtained by
regressing the constant and the predictive slopes from
the time series regression on the betas cross-
sectionally. This three-step estimator was initially pro-
posed by Adrian and Moench (2008) in an application
to affine term structure models with a linear pricing
kernel. In Section 4.1, we show that this estimator nests
the two-pass regressions of Fama and MacBeth (1973),
when Λ1 ¼ 0 and Φ¼ 0. In Section 5, we further discuss
the differences between our approach and the one
proposed in Ferson and Harvey (1991). Heuristically,
these authors first estimate λt from cross-sectional
Fama-MacBeth regressions on time-varying betas and
then Λ by regressing λt on a constant and lagged state
variables.

The second regression-based approach is the following
MD procedure,

B̂md; Λ̂md

	 

¼min

B;Λ
Q B;Λ; Âols;W

md
	 


; ð20Þ

where

Q B;Λ; Âols;W
md

	 

¼ T

� vec Âols�B Λ IKC

� �	 

Wmdvec Âols�B Λ IKC

� �	 

: ð21Þ

This estimator finds the closest approximation of the
unconstrained estimator, Âols, to values of B; λ0, and Λ1,
which satisfy the restrictions in Eq. (17). This MD approach
turns out to be exactly equivalent to the GMM estimator in
this model and, under certain choices of Wmd, nests the
MLE if the error terms et :1rtrTf g are jointly Gaussian.4

Specifically, when the weighting matrix is
Wmd ¼ Ẑ Ẑ

0 � IN
	 


, then the solutions to Eq. (21) are the
MLEs under the assumption that et � iidN 0;σ2

e � IN
� �

. We
label these estimators as “quasi-maximum likelihood esti-
mators” B̂qmle; Λ̂qmle

	 

. Closed-form expressions for these

estimators are given in Appendix A. Specifically, these
estimators replace the third regression step in the ordinary
least squares (OLS) estimation with a simple eigenvalue
decomposition.

In Theorem 1, we show that these two estimators
are asymptotically equivalent under our assumptions,
as they both converge to the same limiting normal
distribution.

Theorem 1. Under our assumptions,ffiffiffi
T

p
vec Λ̂ols�Λ
	 


⟶
d N 0;VΛð Þ;

ffiffiffi
T

p
vec Λ̂qmle�Λ
	 


⟶
d N 0;VΛð Þ;
4 In addition, this equivalence combined with the results of Andrews
and Lu (2001) could be used to produce an intuitive model-selection
criterion to compare across specifications.



5 Here we are assuming that the risk-free rate is observed, so the
model does not include the zero-beta rate. Similar results can be obtained
with the inclusion of a zero-beta rate.
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as T-1, where

VΛ ¼ Υ �1
FF � Σu

	 

þHΛ B;Λ

� �
VrobHΛ B;Λ

� �0
;

Υ FF ¼ p lim
T-1

~F � ~F
0
� = T�1ð Þ, ~F � ¼ ιT F 0�

� �0, and
HΛ B;Λ
� �¼ I KF þ1ð Þ � B0B

� ��1B0
	 


� Λ0 � B0B
� ��1B0

	 
h i
:

The first term of VΛ accounts for replacing the
unobserved innovations U by estimated innovations.
The second term accounts for all other sources of
estimation uncertainty, including that of using an
estimate of B to construct the estimator of Λ. Relative
to the existing literature, Theorem 1 provides a number
of insights. First, it extends feasible inference from the
static Fama-MacBeth approach that assumes Φ¼ 0 and
Λ1 ¼ 0 to the case with persistent factors and time-
varying prices of risk. Second, Theorem 1 provides a
generalization of Theorem 1 of Shanken (1992), which
provides a correction for the uncertainty generated by
estimating B to a setting with persistent factors and
time-varying prices of risk [under conditional homo-

skedasticity, i.e., when Vrob ¼ plimT-1 Ẑ Ẑ
0
TÞ � Σe= Þ

		
for a positive-definite variance matrix Σe]. More gen-
erally, the results allow for conditionally heteroskedas-
tic errors in the spirit of Theorem 1 of Jagannathan and
Wang (1998), and so those results are extended to the
dynamic setting as well. Finally, we show the asympto-
tic equivalence of the QML approach (a special case of
GMM/MD, as mentioned above) and the OLS approach
even under conditional heteroskedasticity, which is
also an extension of Theorem 4 of Shanken (1992) both
for constant and time-varying prices of risk.

Remark 1. (i) Although Λ̂ols and Λ̂qmle are asymptotically
equivalent, the associated estimators of B are generally
not. This is because the estimator B̂ols is not constructed
under the restrictions in Eq. (17). However, with a simple
additional step, we can construct an estimator of B based
on Λ̂ols that is asymptotically equivalent to B̂qmle:

B̂4ols ¼ R Λ̂ols
~F � þÛ

	 
0
Λ̂ols

~F � þÛ
	 


Λ̂ols
~F � þÛ

	 
0h i�1
:

Intuitively, B̂4ols is the OLS estimator of B taking the
estimated prices of risk Λ̂ols as given.
(ii) Under the assumption that et jF t�1 � iidN 0;σ2

e � IN
� �

and all variables are X2-type variables, the estimators Λ̂ols

and Λ̂qmle are asymptotically efficient. B̂qmle and B̂4ols are
also asymptotically efficient, although B̂ols is asymptoti-
cally efficient only when N¼ KC .

In traditional asset pricing models with constant prices
of risk, the parameter λ0 determines whether a risk factor
is priced in the cross section of test assets. However, when
prices of risk are time varying, this parameter is no longer
of independent interest. Instead, to gauge whether differ-
ential exposures to a given pricing factor result in sig-
nificant spreads of expected excess returns, one has to test
whether a specific element of λ is equal to zero, where

λ ¼ λ0þΛ1E Ft½ �: ð22Þ

Theorem 2. Under our assumptions,ffiffiffi
T

p
vec ^λols�λÞ⟶d N 0;Vλ

	 

;

ffiffiffi
T

p
vec ^λqmle�λÞ⟶d N 0;Vλ

	 

;

��
as T-1, where Vλ is given in Appendix D.1.

In Appendix D.1 we show that Vλ is a simple
expression that invokes quantities that are known in
closed form and easy to compute. Using this result, we
can form a t-statistic of the null hypothesis that the
sample average of the market price of risk for a given
pricing factor is equal to zero. This allows us to test
whether a given factor is unconditionally priced in the
cross section of test assets.

4.1. Relation to Fama-MacBeth regressions

Standard factor pricing models assume that prices of
risk are constant and that the pricing factors are unfor-
ecastable. Hence, the prevalent factor model used in the
literature implicitly assumes that data are generated by5

Ri;tþ1 ¼ β0
iλ0þβ0

ivtþ1þei;tþ1 ð23Þ
and

Xtþ1 ¼ μþvtþ1; t ¼ 0;…; T�1; ð24Þ
see, for example, Cochrane (2005, p. 276). This setup is
nested in our model if Φ¼ 0 and Λ1 ¼ 0. This model is
most commonly estimated by the two-pass Fama-MacBeth
estimator (Fama and MacBeth, 1973) whose properties
have been studied by Shanken (1992), Jagannathan and
Wang (1998), and Shanken and Zhou (2007) among many
others. The Fama-MacBeth estimator for λ0 is

λ̂
FM

0;ols ¼ B̂
0
olsB̂ols

	 
�1
B̂
0
olsÂ0;ols; ð25Þ

where A0 is the estimated constant term from a contem-
poraneous regression of returns on de-meaned factors. For
comparison with Theorem 1, note that under our assump-
tions it can be shown thatffiffiffi
T

p
λ̂
FM

0;ols�λ0
� 


⟶
d N 0;VFM

Λ

� �
;

VFM
Λ ¼ΣuþHFM

Λ B; λ0
� �

VFM
robHFM

Λ B; λ0
� �0

;

HFM
Λ B;Λ
� �¼ B0B

� ��1B0 � λ00 � B0B
� ��1B0

	 
h i
; ð26Þ

where VFM
rob is the probability limit of the

heteroskedasticity-robust variance matrix from a contem-
poraneous regression of returns on factors and a constant.
Because we allow for conditional heteroskedasticity, the
variance matrix VFM

Λ is in the spirit of that obtained by
Jagannathan and Wang (1998) when the risk-free rate is
observed. Similarly, the variance expression derived in
Shanken (1992) can be obtained by using VFM

Λ with VFM
rob
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formed under the assumption of conditionally homoske-
dastic errors.

The analogous estimator, λ̂
FM

0;qmle, has received relatively
less attention in the literature than its counterpart, derived
under the assumption that et � iidN 0;Σeð Þ.6 As in the more

general case above, λ̂
FM

0;ols and λ̂
FM

0;qmle are still asymptotically

equivalent so that
ffiffiffi
T

p
λ̂
FM

0;qmle�λ0
� 


-dN 0;VFM
Λ

� �
even in

the presence of conditional heteroskedasticity. To our
knowledge, this has not previously been pointed out in
the literature. Following similar steps as in Appendix C,
even with the inclusion of a zero-beta rate, the direct
equivalence between the MD and GMM estimators (for
any choice of weight matrix) and the MLE (for specific
choices of weight matrix) can be established for the model
of Eqs. (23) and (24). Special cases of this result have been
pointed out in the literature. Ahn and Gadarowski (1999)
discuss, and Kan and Chen (2005) show, the equivalence
between the MD estimator and the MLE. More recently,
Shanken and Zhou (2007) show the equivalence between
the GMM estimator and the MLE (see also Zhou, 1994;
Kleibergen, 1998).

It follows from the equivalence between MD and GMM
estimation for the model of Eqs. (23) and (24) that the J-
statistic is equivalent to the MD criterion function [i.e., Eq.
(21)]. Thus, the cross-sectional T2 statistic of Shanken
(1985) [see Lewellen, Nagel, and Shanken (2010) for a
detailed discussion of the test statistic], which corresponds
to the MD criterion function when there is an unknown
zero-beta rate (evaluated at the two-pass estimators) may
be interpreted directly as a J-test of the moment restric-
tions for the model. This is an intuitively appealing inter-
pretation because the J-statistic is then a direct joint test of
the cross-sectional asset pricing restrictions imposed by
the assumption of no-arbitrage. This is consistent with
Lewellen, Nagel, and Shanken (2010), which emphasizes
the importance of analyzing the estimators of all the
parameters of the model instead of solely focusing on
the price of risk. More generally, one key part of our
contribution is to extend the static setting discussed here
to the dynamic setting introduced in Section 3 without
compromising the simplicity of implementation that has
made the Fama-MacBeth estimator so popular in the
applied finance literature.

Some authors apply the Fama-MacBeth estimator in
model specifications with constant prices of risk, where
the pricing factors are given by the VAR(1) innovations of a
vector of state variables (see, for example, Chen, Roll, and
Ross, 1986; Campbell, 1996; Petkova, 2006). These speci-
fications thus rely on the return generating process:

Ri;tþ1 ¼ β0
iλ0þβ0

ivtþ1þei;tþ1 ð27Þ

and

Xtþ1 ¼ μþΦXtþvtþ1; t ¼ 0;…; T�1: ð28Þ
6 See, for example, Gibbons (1982), Kandel (1984), Roll (1985),
Shanken (1985, 1986), Kan and Chen (2005), Shanken and Zhou (2007),
and Kleibergen (2009), among others.
As an exercise, consider the case in which the true data
generating process is governed by Eqs. (1) and (13) so that
the prices of risk vary over time but are mistakenly
assumed to be governed by Eqs. (27) and (28) and
estimated via two-pass Fama-MacBeth regressions. Inter-
estingly, it can be shown that in this caseffiffiffi
T

p
λ̂
FM

0 �λ
� 


⟶
d N 0;Vλ

	 

(see Theorem 2). Thus, the

conventional estimator is consistent for the parameter λ.
However, Wald-type test statistics would commonly be
constructed using a plug-in version of the variance for-
mula of Shanken (1992), which under technical conditions,

converges in probability to Σvþ 1þλ
0
Σ�1

v λ
	 


� B0B
� ��1

B0ΣeB B0B
� ��1. Comparing this expression and that of Vλ

from Appendix D.1 shows that the bias of the standard
variance estimator depends on the values of Λ, Φ, and Σv.

5. Estimation with time-varying betas

A large literature exists on estimating beta representa-
tions of asset pricing models assuming that the betas vary
over time. For example, see Fama and MacBeth (1973),
Ferson and Harvey (1991), and many more. In this section,
we discuss estimation of our model in the case in which
factor risk exposures as well as the parameters governing
the dynamics of the factors are time-varying. The model is,
therefore,

Ri;tþ1 ¼ β0
i;tλ0þβ0

i;tΛ1Ftþβ0
i;tutþ1þei;tþ1 ð29Þ

and

Xtþ1 ¼ μtþΦtXtþvtþ1: ð30Þ
To motivate our estimator consider the case in which the
innovations utf g and the betas are known. In addition, let
Bt ¼ β1;t ;…;βN;t

	 
0
. Then, passing through the vectoriza-

tion operator yields

Rtþ1�Btutþ1 ¼ ~F
0
t � Bt

	 

vec Λ
� �þetþ1: ð31Þ

From there it is easy to see that the associated estimator of
the price of risk is

vec ~Λ
tv
ols

	 

¼

XT�1

t ¼ 0

~F t
~F
0
t � B0

tBt

	 
 !�1 XT�1

t ¼ 0

~F t � B0
t

	 

Rtþ1�Btutþ1ð Þ:

ð32Þ
In practice, the estimator of Eq. (32) is infeasible without
estimates of Bt, μt, andΦt. Furthermore, without additional
assumptions, identification of these parameters would be
impossible as the number of parameters grows too quickly
as T-1.

One approach to identify time variation in βi;t that has
been used in the literature is to posit that the parameters
βi;t are (linear) functions of observable variables (see, for
example, Shanken, 1990; Ferson and Harvey, 1999;
Gagliardini, Ossola, and Scaillet, 2014; and Chordia,
Goyal, and Shanken, 2013). However, a drawback to this
approach is that it requires the correct specification for the
functional form of the βi;t . In fact, as pointed out by
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Ghysels (1998) and Harvey (2001), among others, the beta
estimates obtained in this way are typically sensitive to the
specification of the information set. As a consequence, the
magnitude of the resulting estimated pricing errors can
vary substantially with the choice of conditioning vari-
ables. Other limitations to this approach are that the
number of regressors can grow large and that
commonly-used conditioning variables are available only
at low frequencies.

An alternative identifying assumption is that

βi;t ¼ βi t TÞþoð1Þ; μt ¼ μ t TÞþoð1Þ;=
���

Φt ¼Φ t TÞþoð1Þ;=
� ð33Þ

where all βi �ð Þ, μ �ð Þ, and Φ �ð Þ are sufficiently smooth
functions to estimate the parameters nonparametrically.
Appendix D.2 provides some additional details about this
assumption and its implications.7 This assumption has the
appeal that it implies that the betas do not vary too much
over short time periods, which is consistent with both
economic theory and prior empirical studies (see, for
example, Braun, Nelson, and Sunier, 1995; Ghysels, 1998;
and Gomes, Kogan, and Zhang, 2003). Importantly, it
imposes less structure than assuming a precise functional
form for the parameters and so is likely more robust to
misspecification. Intuitively, the functional form assump-
tions in Eq. (33) imply that as T grows, the amount of local
information about the function value increases.

A number of different options exist for nonparametri-
cally estimating the β̂ i;t . We follow Ang and Kristensen
(2012) and use kernel smoothing estimators. We can then
derive, at any point in time, an asymptotic distribution for
all parameters of our model, including the conditional
betas and the price of risk parameters obtained from the
beta estimates. In addition to being more robust to mis-
specification, kernel smoothing estimators have the
appealing feature that they nest, as a special case, rolling
window estimates of βi;t , which are popular in the empiri-
cal literature (for example, Chen, Roll, and Ross, 1986;
Ferson and Harvey, 1991; Petkova and Zhang, 2005; among
many others). Rolling beta estimates are equivalent to
using a uniform one-sided kernel instead of a Gaussian
two-sided kernel, as we do here. The standard approach of
using backward-looking, five-year rolling regressions has
two noteworthy drawbacks. First, for the estimator to be
consistent, the bandwidth sequence (i.e., the window)
needs to shrink to zero. However, the choice of five-year
windows is not data-dependent and so might not be
appropriate for many applications (see Section 6 for
further discussion). Second, the order of the smoothing
bias of the estimator for the betas and the price of risk
parameters is larger for one-sided kernels. In fact,
although the estimator of Λ based on rolling regressions
(with appropriate data-dependent bandwidth choice) in
Eq. (36) below is consistent, a non-negligible bias term
7 See Robinson (1989). A number of other authors have used this
assumption in conjunction with time-varying parameters. See Ang and
Kristensen (2012) for a lucid discussion about this approach to modeling
time-varying parameters.
precludes standard inference procedures without further
adjustment.

Eq. (29) is nested in a time-varying equivalent of the
SUR system discussed in Section 4. We solve the system by
equation-by-equation weighted least squares regressions:

Â0;i;t�1; Â
0
1;i;t�1; β̂

0
i;t�1

	 

¼
 XT

s ¼ 1

Kh
�
s�tð Þ=T�ztvs ztv0s

!�1

�
 XT

s ¼ 1

Kh
�
s�tð Þ=T�ztvs Ri;s

!
ð34Þ

and

μ̂t�1; Φ̂t�1

	 
0
¼

XT
s ¼ 1

Kb
�
s�tð Þ=T� ~Xs�1

~X
0
s�1

 !�1

�
XT
s ¼ 1

Kb
�
s�tð Þ=T� ~Xs�1X

0
s

 !
; ð35Þ

where ztvs ¼ 1;X0
s�1;C

0
s

� �0 and Kh xð Þ ¼K x=h
� �

for some ker-
nel function K �ð Þ and bandwidths h¼ hT and b¼ bT are
positive sequences that converge to zero. The set of regressors,
ztvt , is different than in the constant beta case in which
estimated innovations, ût , were used instead of Ct to estimate
the betas. When betas are time-varying, it is technically
convenient to make this change as we can then directly rely
on results from Kristensen (2009).

Intuitively, the kernel function in Eqs. (34) and (35) places
more weight on observations nearby and less weight on those
farther away, where the rate of decay is governed by the
bandwidths h and b, respectively. Moreover, because we
smooth only in the time dimension, our approach does not
suffer from the so-called curse of dimensionality. To choose
the bandwidths we use a plug-in method developed in
Kristensen (2012) and Ang and Kristensen (2012). In
Appendix A.2, we provide more details on the implementa-
tion of the bandwidth selection.

Given these first-stage estimates, the feasible estimator
of Λ is then

vec Λ̂
tv
ols

	 

¼

XT�1

t ¼ 0

~F t
~F
0
t � B̂

0
t B̂t

	 

þρT

 !�1 XT�1

t ¼ 0

~F t � B̂
0
t

	 

� Rtþ1� B̂t ûtþ1

	 

; ð36Þ

where ρT is a positive sequence that satisfies ρT-0. This
additional term guarantees the stability of the estimator by
ensuring that the matrix is always invertible. It is straightfor-
ward to show that when the betas and VAR coefficients no
longer time vary and ρT ¼ 0, then Λ̂

tv
ols is analytically equiva-

lent to Λ̂ols from Section 4. We then have Theorem 3.

Theorem 3. Under our assumptions,ffiffiffi
T

p
vec Λ̂

tv
ols�Λ

	 

⟶
d N 0;Vtv

Λ

� �
;

as T-1, where

Vtv
Λ ¼

Z 1

0
Ωf τð Þ � B τð Þ0B τð Þ� �

dτ

 !�1

�
Z 1

0
Ωf τð ÞΛ0D0

BΩz τð Þ�1DBΛΩf τð ÞþΩf τð Þ
	 
	"
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�B τð Þ0Σe τð ÞB τð Þ� dτ:
þ
Z 1

0
Ωf τð Þ � B τð Þ0B τð ÞΣu τð ÞB τð Þ0B τð Þ� �

dτ

#

�
Z 1

0
Ωf τð Þ � B τð Þ0B τð Þ� �

dτ

 !�1

and Ωz �ð Þ, Ωf �ð Þ, Σu �ð Þ, and DB are defined in Appendix D.2.

Despite the fact that Λ̂
tv
ols is based on estimates of βi;t , μt,

and Φt, which converge at a rate slower than the para-
metric rate, our estimator of the price of risk achieves the
parametric rate. This is an appealing feature as it means
that the additional flexibility we introduce in modeling the
time variation in the betas and VAR coefficients does not
come at the cost of asymptotic efficiency. The intuition
behind this result is that the additional averaging over
time to estimate Λ accelerates the rate of convergence.
Furthermore, in the spirit of the comment in Remark 1, we
can then reestimate the βi;t from a kernel regression of
Ri;tþ1 on the sum ðΛ̂tv

ols
~F tþ ûtþ1Þ. Finally, in Appendix B, we

discuss how to carry out restricted estimation and infer-
ence for the price of risk parameter Λ.

The time variation in μt andΦt implies that the mean of
the factors is also shifting over time. The definition of λ
must be changed accordingly:

λ ¼ λ0þΛ1 � lim
T-1

T �1
Xt ¼ 1

T

E Ft½ �: ð37Þ

We then have Theorem 4, an analogous result to Theorem 2,

Theorem 4. Under our assumptions,ffiffiffi
T

p ^λ
tv
ols�λÞ⟶d N 0;Vtv

λ

	 

;

�
where Vtv

λ
is defined in Appendix D.2.

The asymptotic variance, Vtv
λ
, can be estimated in a

straightforward manner, and so inference on whether a
factor is priced on average can be conducted easily.

5.1. Comparison with estimators using rolling regressions

In Section 6, we compare our results with the estima-
tors proposed by Fama and MacBeth (1973) and Ferson
and Harvey (1991) (hereafter “FM” and “FH”), both imple-
mented using rolling regressions to obtain time-varying
betas in the first estimation stage. To properly account for
the persistent nature of (some) factors, we implement
these procedures using the estimated innovations ûtþ1 as
pricing factors. This is in contrast to much of the empirical
literature, which estimates betas using the level of the
pricing factors without controlling for lagged observations.
When the pricing factors are persistent, these estimates
are not consistent.8 Rolling regressions yield estimates
8 While the results they report are based on simple rolling regres-
sions without controlling for the potential persistence in the pricing
factors, Ferson and Harvey (1991) mention in Footnote 7 that their results
are robust to the estimation of rolling betas controlling for the lagged
level of the pricing factors.
fβ̂rr

i;t : i¼ 1;…;N; t ¼ 1;…; Tg, which we stack as

fB̂rr
t : t ¼ 1;…; Tg. We then obtain the FM estimator of the

constant price of risk parameter λ0 from

λ̂
FM

0 ¼ T �1
XT
t ¼ 1

γ̂ t ; γ̂ t ¼ B̂
rr0
t B̂

rr
t

	 
�1
B̂
rr0
t Â

rr
0;t ; ð38Þ

where Â
rr
0;t is the (stacked) estimated intercept from the

rolling regressions, the analog to the constant beta case in
Eq. (25). In practice, a five-year burn-in period is necessary
to construct these estimators. For ease of notation, the
equations presented in this subsection ignore this distinc-
tion. As in the constant beta case, the estimator in Eq. (38)
is derived from the asset pricing restriction that the
intercept satisfies A0;t ¼ Btλ0.

Ferson and Harvey (1991) have proposed to estimate
time-varying prices of risk in conditional factor pricing
models by first running Fama-MacBeth two-pass regres-
sions as above and, subsequently, in a third estimation
step, regressing the obtained time series of market prices
of risk (γ̂ t) on one-month lagged predictor variables. This
estimator is similar in spirit to our estimator in which
market prices of risk are modeled as affine functions of a
set of forecasting (X2 and X3) variables.

To implement the FH estimator, we again use the
innovations ûtþ1 as pricing factors but also control for
the lagged values of the price of risk factors, Ft [i.e., Eq.
(29)] to estimate the betas. We then estimate the price of
risk parameters Λ by regressing γ̂ t on a constant and the
lagged price of risk factors, i.e.,

Λ̂
FH ¼

XT�1

t ¼ 0

γ̂ tþ1
~F
0
t

 ! XT�1

t ¼ 0

~F t
~F
0
t

 !�1

: ð39Þ

We compare the two estimators with the ones derived
in this paper in terms of model-implied mean squared
pricing errors in Section 6.

6. Empirical application

In this section, we apply our estimation method to a
dynamic asset pricing model for equity and Treasury
returns. We choose test assets that have been studied
extensively in the empirical asset pricing literature to
illustrate the usefulness of the regression-based dynamic
asset pricing approach. We show that a parsimonious
model with two pricing factors, two price of risk factors,
and one factor that is both fits the cross section of size-
sorted equity portfolios and constant maturity Treasury
portfolios very well on average while, at the same time,
giving rise to strongly significant time variation in risk
premiums. We further show that allowing for time varia-
tion in factor risk exposures substantially improves the
precision of price of risk parameters. Finally, allowing for
time variation in prices of risk is more important than
modeling time variation in factor risk exposures for mini-
mizing squared pricing errors of the model. Traditional
estimation approaches such as the one by Fama and
MacBeth (1973) and Ferson and Harvey (1991) imply
substantially larger pricing errors than our estimator.
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6.1. Data

We obtain ten size-sorted portfolios for US equities from
Ken French's online data library. We further use constant
maturity Treasury portfolios with maturities one, two, five,
seven, ten, 20, and 30 years from the Center for Research in
Securities Prices (CRSP). We compute excess returns over the
one-month Treasury bill yield, which we also obtain from
French's website. Our sample spans the period 1964:01–
2012:12 for a total of 588 monthly observations.

We use the following set of factors to price the joint
cross section of equities and Treasuries. The excess
return on the value-weighted equity market portfolio
(MKT) from CRSP and the small minus big (SMB) portfo-
lio from Fama and French (1993), and the ten-year
Treasury yield (TSY10) serve as cross sectional pricing
factors. We obtain the first two factors from French's
website, and the third from the Federal Reserve Statis-
tical Release H.15. The first two factors explain a sub-
stantial share of the variance of the size decile portfolio
returns. However, they are not usually considered to be
return forecasting variables. We, therefore, treat them as
cross-sectional pricing factors and do not attribute to
them a role for explaining time variation in prices of risk.
The ten-year Treasury yield can be considered a good
proxy for the level of the term structure of Treasury
yields, which has been shown to be a priced factor in the
cross section of Treasury returns (see e.g., Cochrane and
Piazzesi, 2008; Adrian, Crump, and Moench, 2013). We
also allow this factor to determine time variation in
factor risk premiums, as long-term Treasury yields have
been shown to contain predictive information for bond
and stock returns (see e.g., Keim and Stambaugh, 1986;
Campbell, 1987; Fama and French, 1989; Campbell and
Thompson, 2008). In addition to these three factors, we
consider two price of risk factors: the term spread
between the yield on a ten-year Treasury note and the
three-month Treasury bill (TERM) (also obtained from
the Federal Reserve Statistical Release H.15), and the log
dividend yield (DY) of the Standard & Poor's (S&P) 500
index from Haver Analytics. Both factors have previously
been shown to predict equity and bond returns (see e.g.,
Campbell and Shiller, 1988; Fama and French, 1989;
Campbell and Thompson, 2008; Cochrane, 2008) and
are, therefore, good proxies for time variation in risk
premiums. In summary, in our model excess returns are
determined by risk exposures to MKT, SMB, and TSY10,
where the market prices of risk of these three pricing
factors are assumed to vary over time as affine functions
of TSY10, TERM, and DY.

Given this set of test assets and pricing factors, the total
number of risk exposure parameters to estimate is N � KC

or 17� 3¼ 51. The number of market price of risk para-
meters is KC � ðKFþ1Þ or 3� 4¼ 12.

6.2. Empirical results

We start by discussing the estimates of factor risk
exposures assuming constant betas. Table 1 provides beta
estimates for all size and Treasury portfolio returns related
to the three risk factors, implied by the estimators in
Section 4. The first panel reports the OLS estimates and the
second the QML estimates. In each panel, we provide the
estimated betas and associated standard errors for the
three cross-sectional pricing factors MKT, SMB, and TSY10.
Several results are worth highlighting. First, the coeffi-
cients and standard errors implied by the OLS and the QML
estimator are very similar. Hence, any discussion of esti-
mated risk premiums does not qualitatively depend on the
choice of estimator of B. Second, while all size portfolios
significantly load on MKT and SMB, the Treasury portfolios
do not. That is, Treasury portfolio returns do not contem-
poraneously co-move with shocks to the two equity
pricing factors in the constant beta specification. The
market betas of the size portfolios have the expected
magnitudes around one with relatively little dispersion.
This is the well-known size effect: exposure to MKT does
not explain the large spread between average excess
returns on small versus large market cap stocks. In con-
trast, the risk exposures to SMB show a strong differential
between the smallest and the largest size deciles. Finally,
while the Treasury portfolios do not load on the two
equity risk factors, the equity portfolios generally load
significantly on the ten-year Treasury yield factor.

We now compare these estimates with those obtained
assuming betas are time-varying. Fig. 1 provides plots of
factor risk exposures of two test assets, size5 and cmt10,
for all three pricing factors in our model: MKT, SMB, and
TSY10. For each factor-asset pair we compare three differ-
ent beta estimates. The constant one (dash-dotted line) is
obtained using the estimator in Section 4, the time-varying
one (solid line) is obtained using the Gaussian kernel
estimator with data-driven bandwidth choice discussed
in Section 5, and the five-year rolling window estimator
(dashed line) often used in the empirical asset pricing
literature and also represents the first-stage estimates in
our implementation of the Fama and MacBeth (1973) and
Ferson and Harvey (1991) estimators.

Several remarks are in order. First, in all cases, the time-
varying beta estimates are centered around the constant
estimates. Second, while the Gaussian kernel with data-
driven bandwidth implies some variability in factor risk
exposures, it features considerably less time variation in betas
than the five-year rolling beta estimator. In particular, for all
factor-asset pairs, the latter implies betas with signs flipping
multiple times across the sample period. At low frequencies,
however, the rolling beta estimates mimic the evolution of the
Gaussian kernel-based betas. Moreover, despite the smooth
nature of Gaussian kernel estimates, their evolution over time
gives rise to some interesting observations. Most important,
the size5 portfolio's beta on the Treasury factor switches from
a negative to a positive sign in the mid-1990s. Around the
same time, the cmt10 portfolio's beta on the equity market
portfolio switches from a positive to a negative sign. Hence,
our time-varying beta estimates replicate the empirical obser-
vation that the correlation between stock and bond returns
has flipped signs sometime in the 1990s (see e.g. Baele,
Bekaert, and Inghelbrecht, 2010; Campbell, Sunderam, and
Viceira, 2013; David and Veronesi, 2013). Another interesting
observation is that the beta of the ten-year constant maturity
Treasury return (cmt10) onto the ten-year Treasury yield
factor (TSY10) fluctuates quite substantially over time. Because



Table 1
Factor risk exposure estimates.

This table provides estimates of factor risk exposures from the constant-beta specification of the dynamic asset pricing model discussed in Section 6. It
reports ordinary least squares (OLS) estimates and quasi-maximum likelihood (QML) estimates. Asymptotic standard errors are provided in parentheses.
The pricing factors are MKT, the excess return on the Center for Research in Security Prices (CRSP) value-weighted equity market portfolio, SMB, the small
minus big portfolio both obtained from Ken French's website, and TSY10, the constant maturity ten-year Treasury yield from the Federal Reserve Statistical
Release H.15. The test assets are the ten size-sorted stock decile portfolios from Ken French's website (size1… size10), as well as constant maturity Treasury
returns for maturities ranging from one through 30 years (cmt1 … cmt30). We obtain the latter from CRSP. “Wald stats” denote Wald tests for the joint
significance of all factor risk exposures associated with the respective pricing factor. “LR stat” is a likelihood ratio test for the joint significance of all factor
risk exposures across test assets and pricing factors in the model of Eq. (16) (see Kleibergen and Zhan, 2013). The sample period is 1964:01–2012:12. nnn

denotes significance at 1%, nn, significance at 5%, and n, significance at the 10% level.

βMKT s:e:ðβMKTÞ βSMB s:e:ðβSMBÞ βTSY10 s:e:ðβTSY10Þ

OLS estimates

size1 0.851nnn (0.030) 1.171nnn (0.020) 0.109nnn (0.021)
size2 0.984nnn (0.019) 1.066nnn (0.018) 0.053nnn (0.017)
size3 1.007nnn (0.016) 0.898nnn (0.015) �0.111nnn (0.014)
size4 0.996nnn (0.007) 0.804nnn (0.004) �0.099nnn (0.005)
size5 1.018nnn (0.007) 0.662nnn (0.008) 0.036nnn (0.010)
size6 1.003nnn (0.017) 0.480nnn (0.021) �0.277nnn (0.045)
size7 1.031nnn (0.029) 0.362nnn (0.039) �0.160nnn (0.038)
size8 1.033nnn (0.032) 0.264nnn (0.035) �0.293nnn (0.029)
size9 0.995nnn (0.028) 0.067nnn (0.020) �0.429nnn (0.012)
size10 0.988nnn (0.005) �0.276nnn (0.007) 0.188nnn (0.009)
cmt1 0.004 (0.011) 0.009 (0.012) �1.043nnn (0.019)
cmt2 0.001 (0.025) 0.008 (0.320) �2.049nnn (0.204)
cmt5 �0.006 (0.201) �0.003 (0.184) �4.226nnn (0.168)
cmt7 �0.000 (0.149) �0.018 (0.160) �5.164nnn (0.138)
cmt10 0.007 (0.156) �0.015 (0.073) �6.165nnn (0.085)
cmt20 0.003 (0.129) �0.009 (0.111) �7.893nnn (0.117)
cmt30 �0.027 (0.184) �0.004 (0.269) �8.581nnn (0.320)
Wald stat 182,785.308nnn (0.000) 81,346.613nnn (0.000) 30,021.782nnn (0.000)
LR stat 6,297.355nnn (0.000)

QML estimates

size1 0.852nnn (0.030) 1.174nnn (0.020) 0.091nnn (0.021)
size2 0.980nnn (0.020) 1.060nnn (0.018) 0.053nnn (0.017)
size3 1.007nnn (0.016) 0.898nnn (0.015) �0.082nnn (0.014)
size4 0.997nnn (0.007) 0.804nnn (0.004) �0.089nnn (0.005)
size5 1.019nnn (0.007) 0.664nnn (0.008) 0.039nnn (0.010)
size6 1.005nnn (0.017) 0.485nnn (0.020) �0.291nnn (0.045)
size7 1.031nnn (0.029) 0.363nnn (0.038) �0.185nnn (0.037)
size8 1.032nnn (0.032) 0.263nnn (0.035) �0.288nnn (0.029)
size9 0.994nnn (0.027) 0.066nnn (0.020) �0.417nnn (0.011)
size10 0.987nnn (0.005) �0.277nnn (0.007) 0.186nnn (0.009)
cmt1 0.004 (0.010) 0.009 (0.012) �1.048nnn (0.019)
cmt2 0.001 (0.025) 0.008 (0.318) �2.047nnn (0.204)
cmt5 �0.006 (0.201) �0.003 (0.182) �4.217nnn (0.169)
cmt7 �0.000 (0.147) �0.018 (0.158) �5.158nnn (0.137)
cmt10 0.007 (0.154) �0.015 (0.071) �6.151nnn (0.080)
cmt20 0.002 (0.121) �0.009 (0.106) �7.916nnn (0.114)
cmt30 �0.027 (0.180) �0.004 (0.268) �8.579nnn (0.319)
Wald stat 184,171.026nnn (0.000) 80,463.712nnn (0.000) 31,121.825nnn (0.000)
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the return on a bond is, to a first-order approximation, equal
to minus its duration times the yield change, this time
variation reflects the fact that the duration of longer-dated
Treasury securities has changed substantially over the 50 year
sample that we consider. In fact, duration was low in the late
1970s and early 1980s, when rates were high, and has since
experienced a secular upward trend against the backdrop of
falling rates. These dynamics are well captured by the time-
varying beta estimates. Moreover, the five-year rolling
regression-based estimates mimic the evolution of time-
varying betas from the Gaussian kernel-based estimates with
data-driven bandwidth choice well. For other asset-factor
pairs, they appear too noisy.
We next turn to a discussion of the estimated market
prices of risk. Table 2 provides estimates of the market
price of risk parameters λ0 and Λ1 implied by three
different estimators. The second-to-last column provides
the average price of risk estimates λ for each factor and its
asymptotic standard error as provided in Theorems 2 and
4, respectively. These statistics allow us to test whether a
given factor is priced on average in the cross section of test
assets. Finally, the last column provides a Wald statistic for
a test of whether the coefficients in a particular row of Λ1

are jointly equal to zero. This statistic thus indicates
whether there is time variation in each of the factor risk
prices.
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Fig. 1. Comparison of beta estimates. This figure provides plots of beta estimates obtained for different pairs of test assets and cross-sectional pricing
factors. βt ; λt shows time-varying betas estimated using the kernel regression approach presented in Section 5. β0 ; λt denotes the constant beta estimate
obtained using the ordinary least squares (OLS) estimator described in Section 4. Rolling refers to the five-year rolling window estimate. size5 denotes the
fifth decile portfolio from the set of size-sorted stock portfolios from Ken French's website. cmt10 refers to the constant maturity Treasury returns for the
ten-year maturity, obtained from the Center for Research in Security Prices (CRSP). MKT, SMB, and TSY10 denote the value-weighted stock market portfolio
from CRSP, the small minus big portfolio from Fama and French (1993), and the ten-year Treasury yield from the Federal Reserve Statistical Release H.15.
The sample period is 1964:01–2012:12.
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Table 2 reports estimates based on time-varying betas
implied by a Gaussian kernel and Panels B and C show
them for the three-step OLS and QML estimators under
constant betas, respectively. The asymptotic standard
errors (and p-values in the case of the WΛ1

statistic) are
shown in parentheses. We make the following



Table 2
Price of risk estimates.

This table provides estimates of market price of risk parameters from the dynamic asset pricing model discussed in Section 6. Panel A reports ordinary
least squares (OLS) estimates for the specification with time-varying betas, and Panels B and C provide OLS and quasi-maximum likelihood (QML) estimates
for the specification with constant betas. The pricing factors are MKT, the excess return on the Center for Research in Security Prices (CRSP) value-weighted
equity market portfolio, SMB, the small minus big portfolio both obtained from Ken French's website, and TSY10, the constant maturity ten-year Treasury
yield from the Federal Reserve Statistical Release H.15. The price of risk factors are TSY10, TERM, the spread between the constant maturity ten-year
Treasury yield and the three-month Treasury bill, both obtained from the H.15 release, as well as DY, the log dividend yield obtained from Haver Analytics.
The first column, λ0, gives the estimated constant in the affine price of risk specification for each pricing factor. The second through fourth columns provide
the estimated coefficients in the matrix Λ1, which determine loadings of prices of risk on the price of risk factors. The column λ provides an estimate of the
average price of risk as given in Eq. (22). The last column provides the Wald test statistic of the null hypothesis that the associated row is all zeros. The
sample period is 1964:01–2012:12. nnn denotes significance at 1%, nn, significance at 5%, and n, significance at the 10% level.

λ0 TSY10 TERM DY λ WΛ1

Panel A: Time-varying betas

MKT 0.062nnn �0.184nnn 0.302nnn 0.014nnn 6.797nn 25.328nnn

(0.017) (0.058) (0.088) (0.004) (2.785) (0.000)
SMB 0.054nnn �0.194nnn 0.099 0.011nnn 3.565 23.190nnn

(0.013) (0.044) (0.066) (0.003) (2.690) (0.000)
TSY10 0.004nnn �0.014nnn �0.046nnn 0.001nn �0.359 48.636nnn

(0.001) (0.005) (0.007) (0.000) (0.229) (0.000)

Panel B: Constant betas (OLS)

MKT 0.063nn �0.187n 0.301nn 0.014nn 6.067nnn 8.975nn

(0.028) (0.098) (0.147) (0.006) (1.487) (0.030)
SMB 0.054nn �0.192nnn 0.093 0.011nn 3.023 7.599n

(0.022) (0.073) (0.108) (0.005) (2.336) (0.055)
TSY10 0.004 �0.013 �0.050nnn 0.001 �0.386nnn 21.237nnn

(0.002) (0.008) (0.012) (0.001) (0.085) (0.000)

Panel C: Constant betas (QMLE)

MKT 0.063nn �0.187n 0.301nn 0.014nn 6.066nnn 8.975nn

(0.028) (0.098) (0.147) (0.006) (1.424) (0.030)
SMB 0.054nn �0.192nnn 0.093 0.011nn 3.025 7.598n

(0.022) (0.073) (0.108) (0.005) (2.037) (0.055)
TSY10 0.004 �0.013 �0.050nnn 0.001 �0.386nnn 21.237nnn

(0.002) (0.008) (0.012) (0.001) (0.103) (0.000)
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observations. First, the estimated market price of risk
parameters are strikingly similar across the three estima-
tors. This reinforces the above observation that the
Gaussian kernel-based beta estimators with data-driven
bandwidth choice do not move sharply over time. Second,
the price of risk parameters are estimated with much
greater precision in the time-varying beta case, as the
standard errors of most elements of λ0 and Λ1 are
substantially smaller in Panel A. Hence, because the price
of risk parameters are identified based on cross-sectional
variation of the betas, allowing for time-varying risk
exposures more precisely captures the dynamics of the
price of risk. Third, while the constant coefficients in the
market prices of risk are all individually significant at the
1% level across the three estimators, the average price of
risk statistic λ discussed in Theorems 2 and 4 is statisti-
cally different from zero only for MKT in the time-varying
beta case and for MKT and TSY10 in the constant beta
case. Hence, according to all three estimators exposure to
SMB risk is not unconditionally priced in our cross section
of test assets. This is consistent with other studies
showing that SMB is not priced in the cross section of
size- and book-to-market-sorted equity portfolios (see,
for example, Lettau and Ludvigson, 2001). However,
while the price of SMB risk is statistically not different
from zero on average, it exhibits substantial time varia-
tion and fluctuates between positive and negative values
that are significantly different from zero. This is also
indicated by the Wald statistic WΛ1

for the rows of Λ1

being jointly equal to zero, provided in the last column.
All three estimators suggest significant time variation in
the prices of risk on all three cross-sectional pricing
factors of our model, including SMB.

Looking at individual elements of Λ1, we find strong
evidence for time variation in the prices of risk of MKT,
SMB, and TSY10 as all but one element of the coefficient
matrix Λ1 are individually significant at least at the 10%
level. In particular, TSY10 affects the prices of risk of all
three factors with a negative sign. That is, higher long-
term interest rates drive down the price of risk for both
equity and bond market factors. Third, while TERM does
not significantly add to the variation in the price of SMB
risk, a high term spread strongly raises the price of MKT
risk and reduces the price of TSY10 risk. Because equity
portfolios load positively on MKT, this implies that a
positive term spread predicts higher expected excess
returns on stocks, in line with, e.g., Campbell (1987) and
Fama and French (1989). Moreover, noting that the factor
risk exposures of bond returns on TSY10 are negative, the
latter finding is consistent with the evidence in, e.g.,
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Fig. 2. Comparison of cross-sectional pricing properties. This figure provides plots of observed versus model-implied average excess returns on the set of
test assets estimated using four different approaches as discussed in Section 6. The upper-left graph reports results based on our benchmark specification
(βt ; λt) with time-varying betas and time-varying prices of risk, estimated using the approach presented in Section 5. The upper-right graph shows the
unconditional fit of the specification with constant betas but time-varying prices of risk, estimated using the three-stage ordinary least squares (OLS)
estimator discussed in Section 4. The lower-left graph shows the average fit of the model estimated using the approach suggested in Ferson and Harvey
(1991), designated FH, which is based on time-varying betas estimated using five-year rolling window regressions. The lower-right graph presents results
for the Fama and MacBeth (1973), designated, FM, two-pass estimator that is also based on time-varying betas estimated using five-year rolling window
regressions but features constant prices of risk. We implement FM by treating the ten-year Treasury yield as a X1-type pricing factor and omitting the
dividend yield and the term spread as factors. All excess returns are stated in annualized percentage terms. The test assets are the ten size-sorted stock
decile portfolios from Ken French's website (size1 … size10), as well as constant maturity Treasury returns for maturities ranging from one through 30
years (cmt1 … cmt30), obtained from the Center for Research in Security Prices (CRSP). The plots are based on the OLS estimates of the model. The sample
period is 1964:01–2012:12.
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Campbell and Shiller (1991), that a positive slope of the
yield curve predicts higher future Treasury returns. Finally,
the log dividend yield DY has a positive impact on the
prices of risk of all three factors. This confirms previous
evidence, e.g. in Fama and French (1989), that the dividend
yield predicts excess returns on stocks and bonds.

Before diving into a more specific analysis of time
variation in risk premiums, we show the good perfor-
mance of our dynamic asset pricing model in explaining
average excess returns on size and Treasury portfolios.
Fig. 2 shows average model-implied excess returns against
average observed excess returns, as implied by four
different model specifications and corresponding estima-
tors. The upper-left graph shows the average model fit for
the specification with both betas and market prices of risk
time-varying, estimated with the Gaussian kernel-based
estimator discussed in Section 5. The upper-right graph
displays the model fit for the specification with constant
betas, estimated using the three-step OLS regression
approach outlined in Section 4. The lower two graphs
show average pricing errors implied by the Ferson and
Harvey (1991) and Fama and MacBeth (1973) estimation
approaches. While the former features time-varying and
the latter constant prices of risk, both are based on betas



Table 3
Mean squared pricing error comparison.

This table compares mean squared pricing errors across various model
estimation approaches for the asset pricing model discussed in Section 6.
Panel A reports, for each test asset, the mean squared pricing error implied by
the various estimation approaches. βt ; λt denotes our benchmark specification
with both time-varying betas and market prices of risk and the betas being
estimated using the approach discussed in Section 5. β0 ; λt is a specification
with constant betas but time-varying prices of risk estimated using the
ordinary least squares (OLS) estimator discussed in Section 4. Columns 3
(βt ; λ0) and 4 (β0 ; λ0) denote specifications with time-varying and constant
risk exposures, respectively, and constant prices of risk. “FH” refers to the
Ferson and Harvey (1991) estimator discussed in Section 5, which is based on
time-varying betas estimated using five-year rolling window regressions.
“FM” denotes the Fama andMacBeth (1973) two-pass estimator also based on
time-varying betas estimated using five-year rolling window regressions.
Mean squared pricing errors are stated in percentage terms. Panel B shows
the mean squared pricing errors of all model specifications relative to the
benchmark estimation. The test assets are the ten size-sorted stock decile
portfolios from Ken French's website (size1 … size10), as well as constant
maturity Treasury returns for maturities ranging from one through 30 years
(cmt1 … cmt30), obtained from the Center for Research in Security Prices
(CRSP). The sample period is 1964:01–2012:12.

βt ; λt β0 ; λt βt ; λ0 β0 ; λ0 FH FM

Panel A: Mean squared pricing errors

size1 5.87 6.13 7.07 7.06 6.35 6.34
size2 2.77 2.80 3.49 3.49 3.25 3.31
size3 1.96 2.00 2.80 2.80 2.45 2.53
size4 1.90 1.92 2.75 2.75 2.37 2.49
size5 1.69 1.72 2.49 2.49 2.16 2.26
size6 1.78 1.88 2.67 2.67 2.38 2.38
size7 1.74 1.78 2.32 2.32 2.08 2.12
size8 1.51 1.52 1.96 1.96 1.79 1.81
size9 1.27 1.27 1.60 1.60 1.44 1.47
size10 0.33 0.33 0.58 0.58 0.48 0.54
cmt1 0.08 0.10 0.10 0.11 0.08 0.09
cmt2 0.17 0.21 0.22 0.23 0.18 0.19
cmt5 0.35 0.38 0.44 0.44 0.38 0.40
cmt7 0.44 0.49 0.58 0.57 0.46 0.50
cmt10 0.43 0.61 0.71 0.74 0.55 0.58
cmt20 1.24 1.72 1.85 2.03 1.48 1.52
cmt30 1.80 2.82 2.85 3.14 2.08 2.08

Average 1.49 1.63 2.03 2.06 1.76 1.80

Panel B: Mean squared pricing errors relative to βt ; λt

size1 1.04 1.20 1.20 1.08 1.08
size2 1.01 1.26 1.26 1.17 1.20
size3 1.02 1.43 1.43 1.25 1.29
size4 1.01 1.45 1.45 1.24 1.31
size5 1.02 1.47 1.47 1.28 1.34
size6 1.06 1.49 1.50 1.33 1.33
size7 1.02 1.33 1.33 1.20 1.22
size8 1.01 1.29 1.30 1.19 1.19
size9 1.00 1.26 1.26 1.13 1.15
size10 1.00 1.73 1.74 1.45 1.62
cmt1 1.27 1.26 1.32 1.03 1.05
cmt2 1.27 1.28 1.35 1.08 1.11
cmt5 1.09 1.26 1.26 1.09 1.15
cmt7 1.10 1.31 1.30 1.05 1.13
cmt10 1.43 1.65 1.73 1.30 1.36
cmt20 1.39 1.50 1.64 1.20 1.23
cmt30 1.56 1.58 1.74 1.15 1.15

Average 1.14 1.40 1.43 1.19 1.23

9 To ensure a fair comparison across estimators, we report mean
squared errors taken over the same sample period, thus taking into
account the trimming of data in the time-varying beta case.
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estimated via five-year rolling regressions. The graphs
show that our joint dynamic asset pricing model fits the
cross section of average excess returns very well, in both
the constant and the time-varying beta specification.
In contrast, both the Ferson and Harvey (1991) and
Fama and MacBeth (1973) estimators imply average fitted
excess returns for the equity portfolios in our cross section
that are all lower than the observed average excess
returns.

The model's ability to fit returns should be assessed not
only on average but also at each point in time. Panel A of
Table 3 reports mean squared pricing errors for our model
as implied by the different specifications and estimation
approaches. Specifically, for each test asset i, we report the
quantity9

MSEi ¼
1
T

XT�1

t ¼ 0

ê2i;tþ1: ð40Þ

The first column (βt ; λt) shows our benchmark specifica-
tion with both time-varying betas and market prices of
risk and the betas being estimated using the approach
discussed in Section 5. The second column (β0; λt) is a
specification with constant betas but time-varying prices
of risk estimated using the OLS estimator discussed in
Section 4. Columns 3 (βt ; λ0) and 4 (β0; λ0) denote speci-
fications with time-varying and constant risk exposures,
respectively, and constant prices of risk. The fifth column
(“FH”) provides the Ferson and Harvey (1991) estimator
discussed in Section 5, which is based on time-varying
betas estimated using five-year rolling window regres-
sions. Finally, the last column (“FM”) shows the Fama and
MacBeth (1973) two-pass estimator based also on time-
varying betas estimated using five-year rolling window
regressions. All mean squared pricing errors are stated in
percent.

The main result of the table is that none of the
alternative estimation approaches generates mean
squared pricing errors that are smaller than those implied
by the benchmark (βt ; λt) specification for any of the test
assets. In particular, the specifications with constant prices
of risk imply substantially larger pricing errors. The FH
estimator, which features time-varying prices of risk but
betas estimated using five-year rolling window regres-
sions, also produces pricing errors that substantially
exceed those implied by our benchmark estimator. The
relative performance of the various estimation approaches
can best be seen from mean squared error (MSE) ratios
with respect to our benchmark estimation specification
(βt ;λt), provided in Panel B of Table 3. These ratios show
that the benchmark specification outperforms the specifi-
cation with time-varying prices of risk but constant betas,
substantially for the Treasury portfolios but, at most by a
few percentage points for the size-sorted equity portfolios.
This implies that in our model allowing for time variation
in betas is relatively more important for Treasury returns.
In contrast, allowing for time variation in prices of risk
dramatically reduces the mean squared pricing error, as
evidenced by the fact that both specifications with con-
stant prices of risk (βt ;λ0 and β0; λ0) imply MSEs that
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exceed the benchmark specification between 20% and 74%.
Turning to the last two columns, when betas are estimated
using five-year rolling regressions, allowing for prices of
risk to vary over time, as in the Ferson-Harvey estimator,
improves the model fit with respect to the Fama-MacBeth
estimator, but the difference is substantially smaller than
when betas are estimated using Gaussian kernels. More
important, both the FH and FM estimators imply an
average MSE of 19% and 23% larger than that of our
benchmark specification. Hence, estimators using rolling
five-year window regressions perform substantially less
well than our estimator using time-varying betas obtained
from Gaussian kernel regressions.10

In sum, our results show that the time variation of
excess returns on stock and bond portfolios is mainly
10 For comparison, we consider estimators of the price of risk
parameters based on estimated betas using the level of price of risk
factors instead of innovations. However, not surprisingly, the results are
very poor and so we omit them from the presented results.
driven by time-varying prices of risk and, to a much
smaller extent, by changes in the factor risk betas.
This finding is consistent with the results of Ferson and
Harvey (1991) and highlights the importance of using a
dynamic framework and an estimation approach consis-
tent with such a framework when testing asset pricing
models.

We now turn to a characterization of the dynamics of
the price of risk. Fig. 3 provides a plot of the estimated
price of MKT risk implied by the model, as given by our
benchmark estimation approach with time-varying betas
and time-varying prices of risk. The upper-left graph
shows the time series evolution of the estimated price of
risk along with its conditional 95% confidence interval. The
plot shows that the price of MKT risk is strongly time-
varying. While it has on average amounted to about 6%
over the past 50 years, there have been a few episodes in
which the estimated price of market risk has been mark-
edly negative. In particular, during the final two years of
the dotcom bubble as well as in the two years before the
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recent financial crisis, the estimated market risk premiums
fell below zero, indicating that, according to our model,
equity investors would have anticipated negative excess
returns on equity in these periods.

The remaining graphs in Fig. 3 show the contribution of
the three price of risk factors to these dynamics. Recall that,
in our model, λt ¼ λ0þΛ1Ft , where Ft is the vector of price of
risk factors. Accordingly, the three graphs show the quan-
tities λ1jFjt , where λ1j is the ð1; jÞ element of Λ1 and Fjt is the
jth factor in Ft. These graphs thus allow one to attribute the
dynamics of the price of market risk to its various compo-
nents. As an example, our model implies that the equity risk
premium was at an all-time high in the spring of 2009.
Looking at the individual contributions of the three price of
risk factors, this period was characterized by a combination
of a very low ten-year Treasury yield, a relatively high term
spread, and a fairly elevated dividend yield.

Fig. 4 shows the estimated time series of annualized
prices of risk for the SMB and TSY10 factors along with
their conditional 95% confidence intervals. Both series
exhibit substantial time variation. The price of SMB risk
largely mimics the dynamics of the price of MKT risk, but it
has a somewhat lower average level. As shown in Table 2,
the average price of SMB risk is not significantly different
from zero in our sample. However, as shown by its
conditional 95% confidence interval, the price of SMB risk
has been significantly different from zero over various
subperiods in our sample. Turning to the evolution of the
market price of TSY10 risk, shown in the right graphs of
Fig. 4, exposure to long-term Treasury risk was associated
with a positive price of risk for much of the period from
the beginning of the sample in 1963 through the early
1980s. However, around the time of the Volcker disinfla-
tion period, the price of TSY10 risk switched sign and has
since fluctuated around mostly negative values. The expo-
sure of equity portfolios to the Treasury factor switched
signs from negative to positive sometime in the mid-
1990s. Combined, these results imply that exposure to
long-term Treasury risk generated strongly fluctuating risk
prices for stock portfolios over the last 50 years. While the
price of risk was mostly negative in the early part of the
sample, it flipped sign in the early 1980s and became
negative again around the mid-1990s.

An important aspect of our modeling framework is that
we can use the dynamics of the pricing factors to predict
expected excess returns further out than one month
ahead. This is useful as it facilitates a quantitative analysis
of risk premiums at longer-term investment horizons.
Fig. 5 shows the model-implied expected excess return
on the fifth size portfolio and the ten-year constant
maturity Treasury portfolio one year and five years into
the future, as implied by our benchmark specification with
time-varying betas and prices of risk. The charts indicate
that the model-implied risk premiums feature sizable time
variation. For the fifth size portfolio, they varied in a range
from minus 15% to 30% at a one-year-ahead horizon and
between 2% and 12% at a five-year-ahead horizon. For the
ten-year Treasury portfolio, the time variation of risk
premiums is in a narrower range of around minus four
to slightly over 10% at the one-year horizon and between
slightly below zero and around 5% at the five-year horizon.
Hence, our model and estimation approach predict mean-
ingful variation of longer-term risk premiums, consistent
with the persistence of actual excess returns over long
horizons. For comparison, we superimpose the corre-
sponding long-horizon risk premiums implied by the
specification with time-varying betas but constant prices
of risk. Not surprisingly, this specification implies only
minor time variation in risk premiums.

7. Conclusion

Dynamic asset pricing models constitute the core of
modern finance theory. Virtually all of the macro-finance
literature of recent decades is cast in dynamic terms,
often giving rise to time-varying risk prices. Empirically,
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the time variation in prices of risk has been shown
robustly (see, e.g., Campbell and Shiller, 1988; Cochrane,
2011).

In this paper, we provide a unifying framework for
estimating beta representations of generic dynamic asset
pricing models that impose cross-sectional no-arbitrage
restrictions and allow for betas to vary smoothly over time
and for prices of risk to vary with observable state
variables. We allow for state variables that are cross-
sectional pricing factors or forecasting variables for the
price of risk, or both. Our estimation results show that all
three types of variables are empirically relevant.

Our regression-based estimation approach can be
explained as a three-step estimator. First, shocks to
the state variables are obtained from a time series vector
autoregression. Second, asset returns are regressed on
lagged state variables and their contemporaneous innova-
tions, generating predictive slopes and risk betas for
each test asset. In the third step, prices of risk are obtained
by either regressing the predictive slopes on the betas
cross-sectionally or by an eigenvalue decomposition of
the predictive slopes and betas. The three-step regression
estimator coincides with the estimator of Fama and
MacBeth (1973) when state variables are uncorrelated
across time and prices of risk are constant. Our approach
thus nests the popular Fama-MacBeth two-pass estimator.

All of the estimators presented in this paper are either
directly or indirectly based on standard regression outputs.
As a result, our estimation approach is computationally
efficient and robust. We provide an application to the joint
pricing of stocks and bonds, which features very good
cross-sectional pricing properties with small average pri-
cing errors as well as strongly significant time variation of
risk premiums. We find that the time variation in risk
prices is more important than the time variation in betas
for achieving good model fits.
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Appendix A. Implementing the estimators

A.1. Constant betas

More concretely λ̂0;ols, λ̂0;qmle, Λ̂1;ols, and Λ̂1;qmle can be obtained by the following three steps.
1.
 Estimate the joint VAR in Eq. (1) via V̂ ¼ X�Ψ̂ ols
~X � where Ψ̂ ols ¼ X ~X

0
� ~X � ~X

0
�

	 
�1
and ~X � ¼ ιT X0

�
� �0. Form Û as the

KC � T matrix extracted from the first KC rows of V̂ . Finally, construct the estimators Σ̂u ¼ Û Û
0
T= and Υ̂ FF ¼ ~F � ~F

0
� T= .
2.
 Estimate Âols ¼ RẐ
0
Ẑ Ẑ

0	 
�1
and then form the heteroskedasticity robust standard errors

V̂ rob ¼ T � Ẑ Ẑ
0	 
�1

� IN

� 
 XT
t ¼ 1

ẑt ẑ
0
t � êt ê

0
t

� � !
Ẑ Ẑ

0	 
�1
� IN

� 

;

where ẑt ¼ 1; F 0t�1; û
0
t

� �0
and êt ¼ Rt� Âolsẑt .
3.
 Estimate

λ̂0;ols ¼ B̂
0
olsB̂ols

	 
�1
B̂
0
olsÂ0;ols; Λ̂1;ols ¼ B̂

0
olsB̂ols

	 
�1
B̂
0
olsÂ1;ols:

Next, let L¼ ζ1⋯ζKC

� �
, where ζi is the eigenvector associated with the ith largest eigenvalue of the matrix ÂolsẐ Ẑ

0
Â
0
ols.

Then let

B̂qmle;0 ¼ L; D̂qmle;0 ¼ L0Âols:

Define Δ̂qmle;0 as the last KC columns of the matrix D̂qmle;0. Then,

B̂qmle ¼ B̂qmle;0Δ̂qmle;0; D̂qmle ¼ Δ̂
�1
qmle;0D̂qmle;0;

and Λ̂qmle is the matrix formed from the first KFþ1 columns of D̂qmle. Finally, construct the variance estimators

V̂Λ;ols ¼ Υ̂
�1
FF � Σ̂u

� 

þHΛ B̂ols; Λ̂ols

	 

V̂ robHΛ B̂ols; Λ̂ols

	 
0
and

V̂Λ;qmle ¼ Υ̂
�1
FF � Σ̂u

� 

þHΛ B̂qmle; Λ̂qmle

	 

V̂ robHΛ B̂qmle; Λ̂qmle

	 
0
:

A.2. Time-varying betas

Λ̂
tv
can be obtained in three steps. The implementation requires choices of the trimming parameter ρT . In our empirical

application, we choose ρT ¼ 10�6. In addition, to avoid boundary bias issues we drop the first and last 12 monthly
observations in our empirical application, following Ang and Kristensen (2012).
1.
 Estimate the time-varying joint VAR in Eq. (30). Assume Ψt follows a polynomial of order P in t, i.e., regress Xi;tþ1 on

π tð Þ � Xt�1ð Þ, where π tð Þ ¼ 1; t;…; tP
� �

for i¼ 1;…;K . Combine these coefficient estimates to form Ψ̂
0
t . In our application,

we choose P¼6 following Ang and Kristensen (2012). Next, follow the steps in Ang and Kristensen (2009) and Kristensen

(2012) to obtain the short-run and long-run bandwidth choices bsri and blri for i¼ 1;…;K . Then construct the estimator of
the ith row of Ψt via

Ψ̂ t�1

h i
i;�
¼
XT
s ¼ 1

Kb
s�t
T

� 

Xi;s

~X
0
s�1

XT
s ¼ 1

Kb
s�t
T

� 

~Xs�1

~X
0
s�1

 !�1

;

where bA bsri ; b
lr
i

n o
, Xi;s is the ith element of Xs and ~Xs�1 ¼ 1;X0

s�1

� �0. Here, K xð Þ ¼ 2πð Þ�1=2 exp �x2=2
� �

. Then form v̂t by

v̂t ¼ Xt�Ψ̂ t�1
~Xt�1. Finally, construct

Ω̂x;t ¼ T �1
XT
s ¼ 1

Kb
s�t
T

� 

~Xs�1

~X
0
s�1; Σ̂ v;t ¼ T �1

XT
s ¼ 1

Kb
s�t
T

� 

v̂sv̂

0
s;

where b¼ bc is a common bandwidth choice. In our application, we use the average bandwidth chosen across the K equations.



T. Adrian et al. / Journal of Financial Economics 118 (2015) 211–244230
2.
 Estimate the time-varying reduced-form return generating Eq. (29). Assume At follows a polynomial of order P in t, i.e.,

regress Ri;tþ1 on π tð Þ � ztvt
� �

, where π tð Þ ¼ 1; t;…; tP
� �

for i¼ 1;…;N. Combine these coefficient estimates to form Â
0
i;t . In

our application we choose P¼6 following Ang and Kristensen (2012). Next, follow the steps in Ang and Kristensen (2009)

and Kristensen (2012) to obtain the short-run and long-run bandwidth choices hsr
i and hlri for i¼ 1;…;N. Then, construct

the estimator of Ai;t via

Âi;t�1 ¼
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s ¼ 1

Kh
s�t
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ztvs z
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 !�1 XT
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ztvs Ri;s;
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n o
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0
s�1;C

0
s

	 
0
. Here, K xð Þ ¼ 2πð Þ�1=2 exp �x2=2

� �
. Then, form êi;t ¼ Ri;t� Âi;t�1ztvt . Finally,

construct

Ω̂f ;t ¼ T �1
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s�t
T
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~F s�1

~F
0
s�1; Σ̂ e;t ¼ T �1
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s ¼ 1
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s�t
T

� 

êsê

0
s;

where h¼ hc is a common bandwidth choice. In our application, we use the average bandwidth chosen across the N
equations.
3.
 Estimate

vec Λ̂
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XT�1

t ¼ 0

~F t
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0
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0
t B̂t
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;

where B̂t ¼ β̂1;t⋯β̂N;t

h i0
and β̂ i;t are the last KC elements of Âi;t from Step 2 using the long-run bandwidths hlri for

i¼ 1;…;N. Finally, construct the variance estimators

V̂ tv
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Appendix B. Imposing restrictions on parameters

Although the classification of state variables into risk and price of risk factors allows for the specification of more
parsimonious models, situations still could exist in which one would like to impose zero (or other linear) restrictions to the
parameter of interest Λ (or possibly to B). These restrictions could be most easily imposed by the following steps. Suppose,
without loss of generality, the restrictions are of the form H vec θ

� �¼ 0, where H is a known q� KC KFþ1ð Þ matrix with
rank Hð Þ ¼ q, θ¼ vec Bð Þ0; vec Λ

� �0� �0
, and the restrictions do not violate that rank B0B

� �¼ KC . For example, if one wanted to
impose the restriction that the second element of λ0 is equal to zero, then H¼ 00

NKC�1; 0;1;0;…0ð Þ0
	 
0

.
Let B̂ and Λ̂, and the corresponding θ̂ , stand in for either the OLS or QMLE estimators introduced in this paper. Then the

restricted estimator can be found by

θ̂r ¼ min
θ s:t: H vec θð Þ ¼ 0

θ̂
0
WT θ̂ ¼ θ̂�W �1

T H0 HW �1
T H0

	 
�1
Hθ̂ : ð41Þ
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The optimal weight matrix is one that satisfies WT-pV�1
θ , as T-1, where Vθ is the asymptotic variance of θ̂ . Under this

choice of weighting matrix with H vec θ
� �¼ 0,ffiffiffi

T
p

vec θ̂�θ
	 
	 


⟶
d N 0;Vθ�VθH

0 HVθH
0� ��1HVθ

	 

; ð42Þ

as T-1. In the case of B̂ols and Λ̂ols, Vθ is

Vθ ¼
VB;ols Cols
C0ols VΛ

" #
; Cols ¼ 0N KF þ1ð Þ INKC

� �
VrobHΛ B;Λ

� �0
; ð43Þ

and VB;ols is the NKC � NKCð Þ bottom right sub-matrix of Vrob. In the case of B̂qmle (or B̂4ols) and Λ̂qmle, Vθ is

Vθ ¼
VB;qmle Cqmle

C0qmle VΛ

" #
; ð44Þ

Cqmle ¼HB B;Λ
� �

VrobHΛ B;Λ
� �0

; VB;qmle ¼HB B;Λ
� �

VrobHB B;Λ
� �0

; ð45Þ
and

HB B;Λ
� �¼ ΛΥ FFΛ

0 þΣu
� ��1 Λ IKC
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Υ ZZ � IN

	 

� ΛΥ FFΛ

0 þΣu
� ��1ΛΥ FF � B
	 


HΛ B;Λ
� �

; ð46Þ

where Υ ZZ ¼ p lim
T-1

Ẑ Ẑ
0
=T . Further details are provided in Appendix D.

In the case in which betas are time-varying we can follow similar steps. For the linear restriction Hθ¼ 0, where
θ¼ vec Λ

� �
, the restricted estimator can be written as

θ̂
tv
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T H0 HW �1
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: ð47Þ

The optimal weight matrix is one that satisfies WT-p Vtv
Λ

� ��1 as T-1. Under this choice of weighting matrix with Hθ¼ 0,ffiffiffi
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0 HVtv
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: ð48Þ
Appendix C. Preliminary results

Before proving Theorem 1, we provide some useful results on reduced rank regressions that are used throughout the
Appendix. We work in the generality of the model

Yt ¼ AX tþFZtþεt ; t ¼ 1;…; T ; ð49Þ
where A¼BD, B is n� k, D is k�m, kominðn;mÞ, X t is m� 1, Zt is p� 1, and F is full rank. Let G¼ A F½ � and ~Z t ¼ X 0

t ;Z0
t

� �0. If
we stack the model, we have Y ¼ AXþFZþE ¼ G ~ZþE and Ĝols ¼Y ~Z 0 ~Z ~Z 0	 
�1

. Under the population moment condition
E ~Z t � εt
� �� �¼ 0, the GMM objective function can be written as

T � T �1
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; ð50Þ

which is the MD criterion function with Wmd ¼ ~Z ~Z 0
=T

	 

� In

	 

Wgmm ~Z ~Z 0

=T
	 


� In
	 


. Thus, the GMM and MD criterion
functions are one-to-one. To show that ML is a special case of MD/GMM, note that under the assumption
vec Eð Þ �N 0; IT � σ2In

� �� �
the log-likelihood is ℓ B;D0;σ2
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2 log 2πσ2
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so that the ML, which solves minGtr E0Eð Þ is the same as the MD estimator with weight matrix ~Z ~Z 0
=T

	 

� In

	 

. Under the

general symmetric weight function Wmd ¼ Wmd
1 � Wmd

2
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and the normalization B0Wmd
2 B¼ Ik (because B and D are not separately identified without further assumption), it can be

shown that the MD estimators are

B̂md ¼ Wmd
2

	 
�1=2
L; D̂md ¼ B̂

0
mdW

md
2 Âols; F̂md ¼ F̂ olsþ Âols� B̂mdD̂md
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1;12 Wmd
1;22

	 
�1
; ð53Þ

where L¼ ζ1⋯ζk
� �

and ζi is eigenvector associated with the ith largest eigenvalue of the matrix
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This follows because
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0
olsW

md
2 ĜolsW

md
1

	 

þtr G0Wmd

2 GWmd
1

	 

�2 tr Ĝ

0
olsW

md
2 GWmd

1

	 

: ð55Þ

We can ignore the first term as it is not a function of B, D, or F. If we fix A (i.e., B and D) and solve for F, then

F̂md ¼ Âols�A
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1;12þ F̂ olsW

md
1;22

	 

Wmd

1;22

	 
�1
¼ F̂ olsþ Âols�BD

	 

Wmd

1;12 Wmd
1;22

	 
�1
; ð56Þ

and plugging this back in and using the normalization B0Wmd
2 B¼ Ik we can obtain

min
B;D;F

vec Ĝols�G
	 
0

Wmd
1 � Wmd

2

	 

vec Ĝols�G
	 


¼ tr D Wmd
1;11�Wmd

1;12 Wmd
1;22

	 
�1
Wmd0

1;12

� 

D0

� 


�2 � tr D Wmd
1;11�Wmd

1;12 Wmd
1;22

	 
�1
Wmd0

1;12

� 

Â
0
olsW

md
2 B

� 

: ð57Þ

Given B we can solve for D, which yields D̂md ¼ B̂
0
mdW

md
2 Âols. Plugging this back in yields the following maximization

problem:

max
~B

tr ~B
0
Wmd

2

	 
1=2
Âols Wmd

1;11�Wmd
1;12 Wmd

1;22

	 
�1
Wmd0

1;12

� 

Â
0
ols Wmd

2

	 
1=2
~B

� 

s:t: ~B

0 ~B ¼ Ik; ð58Þ

where ~B ¼ Wmd
2

	 
1=2
B and the result follows.

Using these derivations, it is straightforward to form a bias-corrected estimator of Λ for the bias induced by replacing
utþ1 by ûtþ1. In particular, this bias arises because ûtþ1 is a function of X1;t , which does not show up in the formulation for
returns in Eq. (13). The prescription to deal with this bias is simply to include X1;t in the first-step regression (associated
with a full-rank coefficient matrix). The degree of the bias is affected by a subset of elements ofΦ, namely, those parameters
that designate how strong the predictive power of X1-type variables is for X1- and X2-type variables. The proofs of Theorems
1 and 2 can then be straightforwardly modified to provide appropriate limiting distributions for these estimators using the
results in this section and Appendix D.
Appendix D. Proofs

D.1. Constant betas

For the results in the constant-beta case, we make the following assumptions (in addition to those made in the main
text): (i) all eigenvalues of Φ have modulus less than one; (ii) Σv;t ¼Σv for all t and Σv is positive definite; (iii) the initial
condition X0 is fixed; (iv) R0

t ; vt
� �0 is a stationary ergodic sequence with E R0

t ; vt
� �0�� ��4o1; (v) the matrix B0B has minimum

eigenvalue bounded away from zero; and (vi) E ei;tvtv0t jF t�1
� �¼ 0 8 t and i¼ 1;…;N.

All of these assumptions are standard except perhaps assumption (vi). Assumption (i) ensures that the dynamics of Xt are
stationary. From an economic perspective, this restriction rules out phenomena such as rational bubbles that would be
associated with exploding risk premiums. From a statistical point of view, the assumption allows us to avoid nonstandard
asymptotic arguments. Assumption (ii) is natural given that B does not time-vary in this case. Assumption (iii) ensures that
the influence of the initial condition is asymptotically negligible. Assumption (v) guarantees that the matrix B0B satisfies
rank B0B

� �¼ KC . Intuitively, we are assuming away the presence of redundant, uninformative or unspanned factors.
Assumption (vi) limits the degree of dependence between ei;t and vt and consequently simplifies our asymptotic variance
formulas. To provide intuition for this assumption note that it would hold in the case that we assumed that R0

t ; vt
� �0 are

jointly independent and identically distributed, conditional on F t�1, from an elliptically symmetric distribution. Under
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these assumptions we have the following results

T �1=2 � vec V ~X
0
�

	 

T �1=2 � vec E ~X

0
�

	 

T �1=2 � vec EV 0� �

266664
377775⟶d N 0;

ΥXX � Σv
� �

0
0 Vrob

" # !
; ð59Þ

and V̂ rob⟶
p Vrob, where ΥXX ¼ p lim

T-1
~X � ~X

0
� T= .

D.1.1. Proof of Theorem 1
We first show the result for Λ̂ols. Let Â01;ols ¼ Â1;ols Â2;ols

h i
so that Λ̂ols ¼ B̂

0
olsB̂ols

	 
�1
B̂
0
olsÂ01;ols. Then,

Λ̂ols

¼ B̂
0
olsB̂ols

	 
�1
B̂
0
olsRMÛ

~F
0
� ~F �MÛ

~F
0
�

	 
�1

¼ΛþUMÛ
~F
0
� ~F �MÛ

~F
0
�

	 
�1
þ B̂

0
olsB̂ols

	 
�1
B̂
0
olsEMÛ

~F
0
� ~F �MÛ

~F
0
�

	 
�1

� B̂
0
olsB̂ols

	 
�1
B̂
0
ols B̂ols�B
	 


Λ� B̂
0
olsB̂ols

	 
�1
B̂
0
ols B̂ols�B
	 


UMÛ
~F
0
� ~F �MÛ

~F
0
�

	 
�1
; ð60Þ

where MÛ ¼ IT �Û
0
Û Û

0	 
�1
Û . Under our assumptions, the last term is op T �1=2

	 

so thatffiffiffi

T
p

vec Λ̂ols�Λ
	 


¼ T 1þT 2þT 3þop 1ð Þ; ð61Þ
where

T 1 ¼ ~F � ~F
0
� =T

	 
�1
� IKC

� 

vec T �1=2U ~F

0	 

; ð62Þ

T 2 ¼ I KF þ1ð Þ � B0B
� ��1B0

	 

vec

ffiffiffi
T

p
Â01;ols�A
	 
	 


; ð63Þ
and

T 3 ¼ � Λ0 � B0B
� ��1B0

	 

vec

ffiffiffi
T

p
B̂ols�B
	 
	 


: ð64Þ
Under our assumptions,

ffiffiffi
T

p
vec Âols�A
	 
	 


-dN 0;Vrobð Þ and is asymptotically uncorrelated with
vec T �1=2U ~F

0	 

-dN 0; Υ FF � Σu

� �� �
and so the result follows.

Now let us consider Λ̂qmle. By the derivations above (when F¼0) and with weight matrix Wmd
1 ¼ Ẑ Ẑ

0
=T and Wmd

2 ¼ IN ,
then we can find B̂qmle and Λ̂qmle as transformations of the KC eigenvectors associated with the largest eigenvalues of the

matrix Âols Ẑ Ẑ
0
=T

	 

Â
0
ols (see Appendix A). By standard properties of MD estimators, we know that the asymptotic variance of

vec B̂qmle

	 

; vec Λ̂qmle

	 
	 
0
is

VBΛ;qmle ¼ J 0
mdW

mdJmd

	 
�1
J 0

mdW
mdVrobW

mdJmd

	 

J 0

mdW
mdJmd

	 
�1
; ð65Þ

where

Jmd ¼
∂ vec Âols�A

	 

∂ vec Bð Þ0

∂ vec Âols�A
	 


∂ vec Λ
� �0

24 35
¼ � Λ IKC

� �0 � IN
� � � I KC þKF þ1ð Þ � B

� �
IKC KF þ1ð Þ 0KC KF þ1ð Þ�K2

C

h i0h i
: ð66Þ

After incorporating the uncertainty from replacing U by Û , it can then be shown that this yields

VBΛ;qmle ¼
HB B;Λ
� �

VrobHB B;Λ
� �0 HB B;Λ

� �
VrobHΛ B;Λ

� �0
HΛ B;Λ
� �

VrobHB B;Λ
� �0 Υ �1

FF � Σu

	 

þHΛ B;Λ

� �
VrobHΛ B;Λ

� �0
24 35; ð67Þ

where

HB B;Λ
� �¼ ΛΥ FFΛ

0 þΣu
� ��1 Λ IKC

� �
Υ ZZ � IN

	 

� ΛΥ FFΛ

0 þΣu
� ��1ΛΥ FF � B
	 


HΛ B;Λ
� �

; ð68Þ

and Υ ZZ ¼ plimT-1Ẑ Ẑ
0
=T ¼ plimT-1 ~Z ~Z

0
=T .
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D.1.2. Proof of Theorem 2
Let μF ¼ E Ft½ � and μ̂F ¼ T �1PT

t ¼ 1 Ft . Here we derive the asymptotic distribution of the estimator bλ ¼ λ̂0þΛ̂1μ̂F . We could
also estimate μF by the last KF elements of IK�Φ̂

	 
�1
μ̂. These two approaches are asymptotically equivalent. Then,

bλ�λ ¼ λ̂0�λ0
	 


þ Λ̂1�Λ1

	 

μFþΛ1 μ̂F�μF

� �þop T �1=2
	 


: ð69Þ
Define ~μF ¼ 1;μ0

F

� �0 and ~Λ1 ¼ 0KC�K1Λ1
� �

so that

bλ�λ ¼ ~μ 0
F � IKC

� �
vec Λ̂�Λ
	 


þ ~Λ1 μ̂�μ
� �þop T �1=2

	 

; ð70Þ

where μ̂X ¼ T �1PT
t ¼ 1 Xt . Note thatffiffiffi

T
p

μ̂X�μX

� �¼ IK �Φð Þ�1T �1=2VιT þop 1ð Þ ð71Þ
and, from the proof of Theorem 1,

vec
ffiffiffi
T

p
Λ̂ols�Λ
	 
	 


¼ Υ �1
FF � IKC

	 

vec U ~F

0
�

	 

þHΛ B;Λ

� � ffiffiffi
T

p
vec Âols�A
	 


þop 1ð Þ: ð72Þ
Under our assumptions, the only covariance term arises from

T �1 vec
	
VιT=

ffiffiffi
T

p 

vec
	
U ~F

0
=
ffiffiffi
T

p 
0
¼ T �1

XT
s ¼ 1

XT
t ¼ 1

~F
0
s�1 � vtu0

s

	 

: ð73Þ

For sat, the sum converges in probability to zero under our assumptions so that

ffiffiffi
T

p bλ�λ
� 


⟶
d N 0;Vλ

	 

; ð74Þ

where

Vλ ¼ ~μ 0
F � IKC

� �
VΛ ~μ 0

F � IKC

� �0 þ ~Λ1 IK�Φð Þ�1Σv IK�Φð Þ�1
h i0 ~Λ 0

1þCλþC0
λ
; ð75Þ

Cλ ¼ ~Λ1 IK �Φð Þ�1Σvu, and Σvu is formed from the first KC columns of the matrix Σv.

D.1.3. Derivations for Appendix B
First we derive the asymptotic covariance matrix Cols. The asymptotic variance of

ffiffiffi
T

p
vec B̂ols�B
	 


is the bottom-right
block element of the matrix Vrob and, from the proof of Theorem 1,

vec
ffiffiffi
T

p
Λ̂ols�Λ
	 
	 


¼ Υ �1
FF � IKC

	 

vec U ~F

0
�

	 

þHΛ B;Λ

� � ffiffiffi
T

p
vec Âols�A
	 


þop 1ð Þ: ð76Þ
Thus, Cols ¼ 0N KF þ1ð Þ INKC

� �
VrobHΛ B;Λ

� �0. Next, we derive the asymptotic covariance matrix Cqmle. From the proof of
Theorem 1,

vec
ffiffiffi
T

p
B̂qmle�B
	 
	 


¼HB B;Λ
� � ffiffiffi

T
p

vec Âols�A
	 


þop 1ð Þ;
so that under our assumptions Cqmle ¼HB B;Λ

� �
VrobHΛ B;Λ

� �0.
D.2. Time-varying betas

For the results in the time-varying beta case, we proceed conditional on the realizations of the random processes Ψ �ð Þ
and βi �ð Þ for i¼ 1;…;N. However, we suppress these arguments in the expectation operator to simplify notation. To simplify
the notation in this Appendix we map, without loss of generality, βi;t↦βi;tþ1, μt↦μtþ1, and Φt↦Φtþ1. For the case in which
betas are time-varying it is more convenient to state the assumptions in terms of the linear model Yt;T ¼At;TX t;T þEt;T , t¼1,
…,T, which nests both Eqs. (29) and (30). Although this is a triangular array of models, we suppress the dependence on T for

simplicity of notation. Finally, define Ωz;t ¼ E ztvt z
tv0
t

� �
, Ωf ;t ¼ E ~F t�1

~F
0
t�1

h i
, Ωx;t ¼ E ~Xt�1

~X
0
t�1

h i
, Σe;t ¼ E ete0t

� �
, and

Σv;t ¼ E vtv0t
� �

, where Σu;t is the matrix formed from the first KC rows and columns of Σv;t . We make the following
assumptions.
(i)
 For all tZ1, supTZ1 suptrTE J X 0
t ; E0

t

� �
J8þ4δ

h i
o1 for some δ40 and is mixing where the mixing

coefficients

mT ið Þ ¼ sup
�TrℓrT

sup
AAF ℓ

�1 ;BAF1
T þ i

P A \ Bð Þ�P Að ÞP Bð Þ
�� ��

satisfy mT ið Þrm ið Þ, TZ0, and the dominating sequence m ið Þ is geometrically decreasing. Et is a martingale
difference sequence with respect to F t ¼ σ X t ; Et�1;X t�1; Et�2;…ð Þ.
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(ii)
 The observed data Yt ;X 0
t

� �
: t ¼ 0;…; T

� �
have been symmetrically trimmed with positive trimming sequence

aT, which satisfies aT=bT-0, aT=hT-0, and
ffiffiffi
T

p
aT-0.� �
(iii)
 The sequence βi;t satisfies βi;t ¼ βi t=T þo 1ð Þ for i¼ 1;…;N and similarly for Ψt, Ωx;t , Σe;t , and Σv;t for some
functions βi �ð Þ, Ψ �ð Þ � μ �ð Þ Φ �ð Þ� �

, Ωx �ð Þ, Σe �ð Þ and Σv �ð Þ, respectively. The elements of these functions are in
Cr 0;1½ �, the space of r times continuously differentiable functions, for some rZ2. For all τA 0;1½ �,Ωx τð Þ, Σe τð Þ,
and Σv τð Þ are positive definite with eigenvalues bounded and bounded away from zero. Finally,
sup0rτr1 γmax Φ τð Þð Þ

�� �� is bounded below one, where γmax �ð Þ is the maximum eigenvalue of a matrix.P � � R � �

(iv)
 limT-1T �1 T

t ¼ 1 Ωf ;t � B0
tBt ¼ 1

0 Ωf τð Þ � B τð Þ0B τð Þ dτ exists and is positive definite with all eigenvalues
bounded and bounded away from zero. Also,

lim
T-1

T �1
XT
t ¼ 1

Ωf ;tΛ
0D0

BΩ
�1
z;t DBΛΩf ;tþΩf ;t

	 

� B0

tΣe;tBt

	 

¼
Z 1

0
Ωf τð ÞΛ0D0

BΩz τð Þ�1DBΛΩf τð ÞþΩf τð Þ
	 


� B τð Þ0Σe τð ÞB τð Þ
	 


dτ ð77Þ

and

lim
T-1

T �1
XT
t ¼ 1

Ωf ;t � B0
tBtΣu;tB

0
tBt

� �
¼
Z 1

0
Ωf τð Þ � B τð Þ0B τð ÞΣu τð ÞB τð Þ0B τð Þ� �

dτ; ð78Þ

and limT-1T �1PT
t ¼ 1 E Xt½ � exist.
(v)
 X0 is fixed, and for 1r irN, E ei;tvtv0t
��F t�1

� �¼ 0.
(vi)
 The kernel K satisfies the following conditions. There exists B; Lo1 such that either K wð Þ ¼ 0 for wk k4L and
K wð Þ�K w0ð Þ
�� ��rB w�w0k k, or K wð Þ is differentiable with ∂K wð Þ ∂wjrB=

�� and, for some ϱ41,
∂K wð Þ ∂wjr wk k�ϱ=
�� for wk kZL. Also, K wð Þ

�� ��rB wk k�ϱ for wk kZL.
R
K wð Þ dw¼ 1 and for some rZ2,R

wiK wð Þ dw¼ 0 for i¼ 1;…; r�1 and
R

wj jrK wð Þ dwo1.
(vii)
 The sequence ρT satisfies
ffiffiffi
T

p
ρT-0. The bandwidth sequence hT satisfies Th2rT -0, log Tð Þ2 Th2

T-0
.

, and
T ϵ�1ð Þ=2h

� 1þδð Þ= 2þδð Þ
T -0 for some ϵ40. The bandwidth sequence bT satisfies Tb2rT -0, log Tð Þ2 Tb2T-0

.
, and

T ϵ�1ð Þ=2b
� 1þδð Þ= 2þδð Þ
T -0 for some ϵ40.
Assumptions (i)–(iii) and (vi)–(vii) are essentially the same as those of Kristensen (2012). The remaining assumptions are
tailored to our model specification. Following similar steps as in Section 3, the martingale difference assumption implies
that E Mtþ1Rtþ1

�� es; vs: srtð Þ� �¼ 0. Thus, these assumptions are consistent with the asset pricing restrictions discussed in
Section 3. When implementing the estimators introduced in this paper, different bandwidths should be used for each series
(see Appendix A.2), however, without loss of generality, the derivations rely on a common bandwidth choice hT and bT to
simplify the presentation. In addition, we suppress the dependence of the bandwidth sequences on T. Finally, define
∏m

i ¼ 1Ai ¼ A1A2⋯Am for a sequence of square matrices and A
�� ��¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr A0A
� �q

the matrix Euclidean norm.
To proceed, we make repeated use of the following two lemmas. The second lemma is Lemma B.11 of Kristensen (2012).

We restate it for convenience.

Lemma D.1. Under our assumptions,

að Þ Ψ̂ t�Ψ t ¼ T �1
XT
s ¼ 1

Kb
s�t
hT

� 

� Ψ s�Ψ t
� � ~Xs�1

~X
0
s�1þvs ~X

0
s�1

h i
Ω�1

x;t þOp b2r
	 


þOp
log T
bT

� 

;

bð Þ Ât�At ¼ T �1
XT
s ¼ 1

Kh
s�t
T

� 

� As�Atð Þzsz0sþesz0s
� �

Ω�1
z;t þOp h2r

	 

þOp

log T
hT

� 

;

cð Þ sup
1r trT

Ât�At

��� ���¼Op hr
� �þOp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log Tð Þ
hT

r !
;

dð Þ sup
1r trT

Ψ̂ t�Ψ t

��� ���¼Op br
� �þOp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log Tð Þ
bT

r !
;

uniformly over 1rtrT .

Proof of Lemma D.1. Parts (a) and (b) follow by the same steps as in the proof of Theorem 2 in Ang and Kristensen (2009).
Parts (c) and (d) follow Kristensen (2009).□
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Lemma D.2. Assume that m tð Þδ= 2þδð Þ ¼ o t�2þϵ� �
for some δ; ϵ40. Then, for any symmetric function ϕT Ys;Ytð Þ, the following

decomposition holds:

T

2

� 
�1X
so t

ϕT Ys;Ytð Þ ¼ θT þ
2
T

XT
t ¼ 1

ϕT Ytð Þ�θT

h i
þRT ;

where

θT ¼
T

2

� 
�1X
so t

E ϕT Ys;Ytð Þ� �
; ϕT yð Þ ¼ E ϕT y;Ytð Þ� �

;

and

E R2
T

h i	 
1=2
¼O sT ;δ � T �1þϵ=2

	 

; sT ;δ ¼ sup

sa t
E ϕT Ys;Ytð Þ
�� ��2þδ
h i	 
1= 2þδÞ:ð

D.2.1. Proof of Theorem3
Throughout we use zt instead of ztvt for simplicity of notation. We first find the asymptotic linear representation of

ffiffiffi
T

p
vec Λ̂

tv
ols

	 

¼ T �1

XT
t ¼ 1

~F t�1
~F
0
t�1 � B̂

0
t B̂t

	 

þρT � IKC KF þ1ð Þ

" #�1

�T �1=2
XT
t ¼ 1

~F t�1 � B̂
0
t

	 

vec Rt� B̂t ût

	 

: ð79Þ

The first factor satisfies

T �1
XT
t ¼ 1

~F t�1
~F
0
t�1 � B̂

0
t B̂t

	 

þρT

" #�1

¼
Z

Ωf τð Þ � B τð Þ0B τð Þ� �
dτ

� ��1

þop 1ð Þ: ð80Þ

This follows because

T �1
XT
t ¼ 1

~F t�1
~F
0
t�1 � B̂t�Bt

	 
0
Bt

	 
�����
�����

rT �1
XT
t ¼ 1

~F t�1
~F
0
t�1

��� ��� B̂t�Bt

	 
0
Bt

��� ���
rC sup

1r trT
B̂t�Bt

	 
��� ��� sup
1r trT

Btk k � T �1
XT

t ¼ 1
~F t�1

~F
0
t�1

��� ���
¼ C sup

1r trT
B̂t�Bt

	 
��� ��� � T �1
XT
t ¼ 1

tr ~F t�1
~F
0
t�1

	 

¼Op hr

� �þOp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log Tð Þ
hT

r !
; ð81Þ

and, by similar steps,

T �1
XT
t ¼ 1

~F t�1
~F
0
t�1 � B̂t�Bt

	 
0
B̂t�Bt

	 
	 

¼Op h2r

	 

þOp

log Tð Þ
hT

� 

: ð82Þ

Thus we just need to deal with the term T �1=2PT
t ¼ 1 B̂

0
t Rt� B̂t ût

	 

. Combining

Rt� B̂t ût ¼ B̂tΛ ~F t�1� B̂t�Bt

	 

Λ ~F t�1þut

	 

�Bt ût�ut

� �� B̂t�Bt

	 

ût�ut
� �þet ; ð83Þ

and, by similar steps as above, that

T �1=2
XT
t ¼ 1

B̂
0
t B̂t�Bt

	 

ût�ut
� � ~F t�1

�����
�����¼ op 1ð Þ ð84Þ

yields

vec Λ̂
tv
ols�Λ

	 

¼ �ρT

Z 1

0
Ωf τð Þ � B τð Þ0B τð Þ� �

dτ

" #�1

vec Λ
� �

þ
Z 1

0
Ωf τð Þ � B τð Þ0B τð Þ� �

dτ

" #�1
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�T �1
XT
t ¼ 1

~F t�1 � B̂
0
t

	 

� B̂t�Bt

	 

Λ ~F t�1þut

	 

þet�Bt ût�ut

� �h i
þop T �1=2

	 

: ð85Þ

The first term is op T �1=2
	 


under our assumptions and so we only need deal with

T �1=2
XT
t ¼ 1

B̂
0
t � B̂t�Bt

	 

Λ ~F t�1þut

	 

þet�Bt ût�ut

� �	 

~F
0
t�1

¼ T �1=2
XT
t ¼ 1

B0
t � B̂t�Bt

	 

Λ ~F t�1þut

	 

þet�Bt ût�ut

� �	 

~F
0
t�1þop 1ð Þ; ð86Þ

where the equality follows because

T �1=2
XT
t ¼ 1

B̂t�Bt

	 
0
B̂t�Bt

	 

Λ ~F t�1

~F
0
t�1

�����
�����¼ op 1ð Þ; ð87Þ

T �1=2
XT
t ¼ 1

B̂t�Bt

	 
0
B̂t�Bt

	 

ut

~F
0
t�1

�����
�����¼ op 1ð Þ; ð88Þ

T �1=2
XT
t ¼ 1

B̂t�Bt

	 
0
et ~F

0
t�1

�����
�����¼ op 1ð Þ; ð89Þ

and

T �1=2
XT
t ¼ 1

B̂t�Bt

	 
0
Bt ût�ut
� � ~F 0

t�1

�����
�����¼ op 1ð Þ; ð90Þ

under our assumptions. Eqs. (87), (88), and (90) follow by similar steps as in Eq. (81) and Eq. (82). Equation (89) is

T �1=2
XT
t ¼ 1

B̂t�Bt

	 
0
et ~F

0
t�1

¼ T �1=2
XT
t ¼ 1

D0
B Ât�At

	 
0
et ~F

0
t�1

¼ T �3=2
XT
s ¼ 1

XT
t ¼ 1

Kh
s�t
T

� 

� D0

BΩ
�1
z;t zsz0s As�Atð Þ0 þzse0s
� �

et ~F
0
t�1þop 1ð Þ; ð91Þ

where DB is the Kþ1þKCð Þ � KC matrix, which satisfies AtDB ¼ Bt and the second equality follows by Lemma D.1. To find the
order of this term, we follow similar steps as in Ang and Kristensen (2009). Thus, we need to find the order of two terms:

T �3=2
XT
t ¼ 1

Kh 0ð Þ � D0
BΩ

�1
z;t zte0tet ~F

0
t�1 ð92Þ

and

T �3=2
X
sa t

Kh
s�t
T

� 

� D0

BΩ
�1
z;t zsz0s As�Atð Þ0 þzse0s
� �

et ~F
0
t�1: ð93Þ

For Eq. (92), note that

T �3=2
XT
t ¼ 1

Kh 0ð Þ � D0
BΩ

�1
z;t zte0tet ~F

0
t�1

�����
�����rC � T �3=2

XT
t ¼ 1

Kh 0ð Þ
�� �� � zte0tet ~F

0
t�1

��� ���
rC � T �1=2h�1 � T �1

XT
t ¼ 1

ztk k2 etk k2

¼Op T �1=2h�1
	 


; ð94Þ

which is op 1ð Þ under our assumptions. For Eq. (93) note that

2 � T �3=2
X
so t

Kh
s�t
T

� 

� D0

BΩ
�1
z;t zsz0s As�Atð Þ0 þzse0s
� �

et ~F
0
t�1 ¼ T �3=2

X
so t

ϕ0;T Ys;Ytð Þ; ð95Þ

where

ϕ0;T Ys;Ytð Þ ¼φ0;T Ys;Ytð Þþφ0;T Yt ;Ysð Þ ð96Þ
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and

φ0;T Ys;Ytð Þ ¼Kh
s�t
T

� 

� D0

BΩ
�1
z;t zsz0s As�Atð Þ0 þzse0s
� �

et ~F
0
t�1; ð97Þ

where Yt ¼ et ; zt ; ςt
� �

with ςt ¼ t
TA 0;1½ �. We can, without loss of generality, proceed under the assumption that ςt � iidU 0;1½ �.

Note first that E φ0;T Ys;Ytð Þ
h i

¼O hr
� �

. Next, define y¼ e; z; τð Þ,

E φ0;T y;Ytð Þ
h i

¼ E Kh τ�ςt
� � � D0

BΩz ςt
� ��1 zz0 A τð Þ�A ςt

� �� �0 þze0
� �

et ~F
0
t�1

h i
¼ 0; ð98Þ

and

E φ0;T Yt ; yð Þ
h i

¼ E Kh τ�ςt
� � � D0

BΩz τð Þ�1 ztz0t A ςt
� ��A τð Þ� �0 þzte0t

� �
e ~F

0h i
¼ e ~F

0 � O hr
� �þo hr

� �
; ð99Þ

so that, by Lemma D.2,

T �3=2
X
so t

ϕ0;T Ys;Ytð Þ ¼Op hr
� �þ ffiffiffi

T
p

�R0;T : ð100Þ

The remainder term of the Hoeffding decomposition is R0;T ¼Op T �1þϵ=2supsa tE φ0;T Ys;Ytð Þ
�� ��2þδ
h i1= 2þδð Þ� 


and, under

our assumptions,

sup
sa t

E φ0;T Ys;Ytð Þ
�� ��2þδ
h i1= 2þδð Þ ¼O h� 1þδð Þ= 2þδð Þ	 


: ð101Þ

Then we have

T �1=2
XT
t ¼ 1

B0
t � B̂t�Bt

	 

Λ ~F t�1þut

	 

þet�Bt ût�ut

� �	 

~F
0
t�1 ¼ T tv

1 þT tv
2 þT tv

3 ; ð102Þ

where

T tv
1 ¼ �T �1=2

XT
t ¼ 1

B0
t B̂t�Bt

	 

Λ ~F t�1þut

	 

~F
0
t�1; ð103Þ

T tv
2 ¼ �T �1=2

XT
t ¼ 1

B0
tBt ût�ut
� � ~F 0

t�1; ð104Þ

and

T tv
3 ¼ T �1=2

XT
t ¼ 1

B0
tet ~F

0
t�1: ð105Þ

T tv
3 is already simplified, so we need only simplify T tv

1 and T tv
2 . First consider T tv

1 :

T tv
1 ¼ �T �1=2

XT
t ¼ 1

B0
t B̂t�Bt

	 

Λ ~F t�1þut

	 

~F
0
t�1

¼ �T �3=2
XT
s ¼ 1

XT
t ¼ 1

Kh
s�t
T

� 

�

B0
t As�Atð Þzsz0sþesz0s
� �

Ω�1
z;t DB ΛDF ;zztþDuvt

� �
z0tD

0
F ;zþop T �1=2

	 

¼ T tv

1;1þT tv
1;2þop T �1=2

	 

; ð106Þ

where the first equality follows by Lemma D.1, DF;z is the KFþ1ð Þ � Kþ1þKCð Þ matrix such that DF ;zzt ¼ ~F t�1, Du is the
KC � K matrix such that Duvt ¼ ut , and

T tv
1;1 ¼ �T �3=2

XT

t ¼ 1
Kh 0ð Þ � B0

tetz
0
tΩ

�1
z;t DB ΛDF ;zztþDuvt

� �
z0tD

0
F ;z ð107Þ

and

T tv
1;2 ¼ �T �3=2

X
sa t

Kh
s�t
T

� 

� B0

t As�Atð Þzsz0sþesz0s
� �

Ω�1
z;t DB ΛDF;zztþDuvt

� �
z0tD

0
F;z: ð108Þ
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T tv
1;1

�� ��¼Op h�1T �1=2
	 


by similar steps as above, and T tv
1;2 is

T tv
1;2 ¼ T �3=2

X
so t

ϕ1;T Ys;Ytð Þ; ð109Þ

where ϕ1;T Ys;Ytð Þ ¼φ1;T Ys;Ytð Þþφ1;T Yt ;Ysð Þ,

φ1;T Ys;Ytð Þ ¼ �Kh
s�t
T

� 

� B0

t As�Atð Þzsz0sþesz0s
� �

Ω�1
z;t DB Λ ~F t�1þut

	 

~F
0
t�1; ð110Þ

Yt ¼ et ; zt ; ςt
� �

, and ςt ¼ t
T. Then, by Lemma D.2,

T tv
1;2 ¼

ffiffiffi
T

p
� T �1

XT
t ¼ 1

ϕ1;T Ytð ÞþR1;T

" #
þop 1ð Þ; ð111Þ

where ϕ1;T yð Þ ¼ E φ1;T y;Ytð Þ
h i

þE φ1;T Yt ; yð Þ
h i

. We have

E ϕ1;T y;Ytð Þ
h i

¼ E �1
h
Kh τ�ςt
� �

B
�
t=T
�0 A τð Þ�A ςt

� �� �
zz0 þez0

� �
Ωz ςt
� ��1DBΛDF;zΩz ςt

� �
D0
F;z

� �
¼
Z 1

0
�Kh τ�ςð ÞB ςð Þ0 A τð Þ�A ςð Þð Þzz0 þez0½ �Ωz ςð Þ�1DBΛDF;zΩz ςð ÞD0

F;z dς

¼
Z τh� 1

τ�1ð Þh� 1
�K ϖð ÞB τ�ϖhð Þ0 A τð Þ�A τ�ϖhð Þð Þzz0 þez0

� �
Ωz τ�ϖhð Þ�1DBΛDF ;zΩz τ�ϖhð ÞD0

F ;z dϖ

¼ �B τð Þ0ez0Ωz τð Þ�1DBΛDF;zΩz τð ÞD0
F;zþO hr

� �þo hr
� �

: ð112Þ
Similarly,

E φ1;T Yt ; yð Þ
h i

¼ E �Kh τ�ςt
� � � B τð Þ0 A ςt

� ��A τð Þ� �
Ωz ςt
� �

Ωz τð Þ�1DB ΛDF;zzþDuv
� �

z0D0
F;z

h i
¼
Z 1

0
�Kh τ�ςð Þ � B τð Þ0 A ςð Þ�A τð Þð ÞΩz ςð ÞΩz τð Þ�1DB ΛDF;zzþDuv

� �
z0D0

F;z dς

¼
Z τh� 1

τ�1ð Þh� 1
�Kh ϖð Þ � B τð Þ0 A τþϖhð Þ�A τð Þð ÞΩz τþϖhð ÞΩz τð Þ�1DB ΛDF ;zzþDuv

� �
z0D0

F;z dϖ

¼O hr
� �þo hr

� �
: ð113Þ

Thus the contribution from this term is

T tv
1;2 ¼ �T �1=2

XT
t ¼ 1

B0
tetz

0
tΩ

�1
z;t DBΛDF;zΩz;tD

0
F ;zþop 1ð Þ; ð114Þ

because
ffiffiffi
T

p
R1;T ¼ op 1ð Þ under our assumptions by similar steps as for R0;T . Next consider T tv

2 :

T tv
2 ¼ �T �1=2

XT
t ¼ 1

B0
tBt ût�ut
� � ~F 0

t�1 ¼ T �1=2
XT
t ¼ 1

B0
tBtDU Ψ̂ t�Ψ t

	 

~Xt�1

~X
0
t�1DF;x; ð115Þ

where DF ;x is the KFþ1ð Þ � Kþ1ð Þ matrix such that DF;x
~Xt�1 ¼ ~F t�1. Then by Lemma D.1,

T tv
2 ¼ T �3=2

XT
t ¼ 1

XT
s ¼ 1

Kb
s�t
T

� 

B0
tBtDU Ψ s�Ψ t

� � ~Xs�1
~X
0
s�1þvs ~X

0
s�1

h i
Ω�1

x;t
~Xt�1

~X
0
t�1D

0
F;xþop 1ð Þ

¼ T tv
2;1þT tv

2;2þop 1ð Þ; ð116Þ
where

T tv
2;1 ¼ T �3=2

XT
t ¼ 1

Kb 0ð Þ � B0
tBtDUvt ~X

0
t�1Ω

�1
x;t

~Xt�1
~X
0
t�1D

0
F;x; ð117Þ

and

T tv
2;2 ¼ T �3=2

X
sa t

Kb
s�t
T

� 

B0
tBtDU Ψ s�Ψ t

� � ~Xs�1
~X
0
s�1þvs ~X

0
s�1

h i
Ω�1

x;t
~Xt�1

~X
0
t�1D

0
F ;x: ð118Þ
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T tv
2;1

�� ��¼Op T �1=2b�1
	 


by similar steps as above, while

T tv
2;2 ¼ T �3=2

X
so t

ϕ2;T Y2;s;Y2;t
� �

; ð119Þ

where

ϕ2;T Y2;s;Y2;t
� �¼φ2;T Y2;s;Y2;t

� �þφ2;T Y2;t ;Y2;s
� �

; ð120Þ

φ2;T Y2;s;Y2;t
� �¼Kb

s�t
T

� 

B0
tBtDU Ψ s�Ψ t

� � ~Xs�1
~X
0
s�1þvs ~X

0
s�1

h i
Ω�1

x;t
~Xt�1

~X
0
t�1D

0
F;x; ð121Þ

and Y2;t ¼ vt ; ~Xt�1;ςt
	 


. Then, by Lemma D.2,

T tv
2;2 ¼

ffiffiffi
T

p
� T �1

XT
t ¼ 1

ϕ2;T Y2;t
� �þR2;t

" #
þop 1ð Þ; ð122Þ

where ϕ2;T y2
� �¼ E φ2;T y2;Y2;t

� �h i
þE φ2;T Y2;t ; y2

� �h i
and y2 ¼ v; ~X ; τ

	 

. First,

E φ2;T y2;Y2;t
� �h i

¼ E Kb τ�ςt
� �

B ςt
� �0B ςt

� �
DU Ψ τð Þ�Ψ ςt

� �� � ~X ~X
0 þv ~X

0h i
Ωx ςt
� ��1 ~Xt�1

~X
0
t�1D

0
F ;x

h i
¼
Z 1

0
Kb τ�ςð ÞB ςð Þ0B ςð ÞDU Ψ τð Þ�Ψ ςð Þ� � ~X ~X

0 þv ~X
0h i
D0
F ;x dς

¼
Z τb� 1

τ�1ð Þb� 1
K ϖð ÞB τ�ϖhð Þ0B τ�ϖhð ÞDU Ψ τð Þ�Ψ τ�ϖhð Þ� � ~X ~X

0 þv ~X
0h i
D0
F ;x dϖ

¼ B τð Þ0B τð ÞDUv ~X
0
D0
F;xþO br

� �þo br
� �

: ð123Þ
Similarly,

E φ2;T Y2;t ; y2
� �h i

¼ E Kb τ�ςt
� �

B τð Þ0B τð ÞDU Ψ ςt
� ��Ψ τð Þ� � ~Xt�1

~X
0
t�1þvt ~X

0
t�1

h i
Ωx τð Þ�1 ~X ~X

0
D0
F;x

h i
¼
Z 1

0
Kb τ�ςð ÞB τð Þ0B τð ÞDU Ψ ςð Þ�Ψ τð Þ� �

Ωx ςð ÞΩx τð Þ�1 dς

" #
~X ~X

0
D0
F ;x

¼
Z τb� 1

τ�1ð Þb� 1
K ϖð Þ � B τð Þ0B τð ÞDU Ψ τ�ϖhð Þ�Ψ τð Þ� �

Ωx τ�ϖhð ÞΩx τð Þ�1 dϖ

" #
~X ~X

0
D0
F;x

¼O br
� �þo br

� �
: ð124Þ

Thus, the contribution from this term is

T tv
2;2 ¼ T �1=2

XT
t ¼ 1

B0
tBtDUvt ~X

0
t�1D

0
F ;xþO br

� �þo br
� �

; ð125Þ

because
ffiffiffi
T

p
:R2;t ¼ op 1ð Þ under our assumptions by similar steps as for R0;t . Thus,

ffiffiffi
T

p
vec Λ̂

tv
ols�Λ

	 

¼
Z

Ωf τð Þ � B τð Þ0B τð Þ� �
dτ

� ��1

� T �1=2
XT
t ¼ 1

DF ;z I Kþ1þKCð Þ �Ωz;tD
0
F ;zΛ

0D0
BΩ

�1
z;t

	 

� B0

t

	 

vec etz0t
� �"

þT �1=2
XT
t ¼ 1

DF;z � B0
tBtDu

� �
vec vt ~X

0
t�1

	 
#
þop 1ð Þ; ð126Þ

and the result follows by Wooldridge and White (1988) and DF;zDB ¼ 0.

D.2.2. Proof of Theorem 4
By Theorem 3 and similar steps as in the proof of Theorem 2, we have that

ffiffiffi
T

p ^λ
tv
ols�λÞ ¼

ffiffiffi
T

p
Λ̂

tv
ols�Λ

	 

T �1

XT
t ¼ 1

~μF ;t

 !
þ ~Λ1 T �1=2

XT
t ¼ 1

μ̂X;t�μX;t

	 
 !
þop 1ð Þ;

 
ð127Þ

where ~μF;t ¼ E ~F t

h i
and μX;t ¼ E Xt½ �. By Theorem 3, we only need focus on the expression T �1=2PT

t ¼ 1 μ̂X;t�μX;t

	 

. Recursive

substitution yields that

T �1
XT
t ¼ 1

E Xt½ � ¼ T �1
XT
t ¼ 1

μtþT �1
XT
t ¼ 1

Xt�1

s ¼ 1

∏
t

i ¼ sþ1
Φ0

i

 !0

μs

" #
þop T �1=2

	 

; ð128Þ
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with associated plug-in estimator, T �1PT
t ¼ 1 μ̂X;t . We aim to write

T �1
XT
t ¼ 1

μ̂X;t�μX;t

	 

¼ T �1

XT
t ¼ 1

wΦ
t vec Φ̂t�Φt

	 

þT �1

XT
t ¼ 1

wμ
t μ̂t�μt

� �
; ð129Þ

where wΦ
t ¼wΦ

t Φ� t ;μ� t

� �
, wμ

t ¼wμ
t Φ� tð Þ, and Φ� t ¼ Φ1;…;Φt�1;Φtþ1;…;ΦTð Þ and similarly for μ� t . We now need to

find the weights wμ
t and wΦ

t . It is more straightforward to deal with the weights wμ
t ,

T �1
XT
t ¼ 1

wμ
t μ̂t�μt

� �¼ T �1
XT
t ¼ 1

μ̂t�μt

� �þT �1
XT
t ¼ 1

~wμ
t μ̂t�μt

� �
; ð130Þ

where

~wμ
t ¼ ~wμ

t Φ� tð Þ ¼
XT

ℓ1 ¼ tþ1

∏
ℓ1

ℓ2 ¼ tþ1
Φ0

ℓ2

 !0

; ð131Þ

so that

wμ
t ¼wμ

t Φ� tð Þ ¼ IKþ
XT

ℓ1 ¼ tþ1

∏
ℓ1

ℓ2 ¼ tþ1
Φ0

ℓ2

 !0

ð132Þ

with wμ
T ¼ IK . Next we need to find wΦ

t .

wΦ
t Φ� t ;μ� t

� �¼ Xt�1

ℓ1 ¼ 1

∏
t�1

ℓ2 ¼ ℓ1 þ1
Φ0

ℓ2

 !0

μℓ1

 !0

� IK þ
XT

ℓ1 ¼ tþ1

∏
ℓ1

ℓ2 ¼ tþ1
Φ0

ℓ2

 !0 ! !
; ð133Þ

with wΦ
1 ¼ 0. Let

wt ¼wt Φ� t ;μ� t

� �¼ wμ
t Φ� tð Þ wΦ

t Φ� t ;μ� t

� �h i
: ð134Þ

Then by repeated applications of Lemma D.1, we have that

T �1=2
XT
t ¼ 1

μ̂X;t�μX;t

	 

¼ T �1=2

XT
t ¼ 1

wtvec Ψ̂ t�Ψ t

	 

þop 1ð Þ: ð135Þ

By an additional application of Lemma D.1,

T �1=2
XT
t ¼ 1

wtvec Ψ̂ t�Ψ t

	 

¼ T �3=2

XT
t ¼ 1

XT
s ¼ 1

Kb
s�t
T

� 

wtvec Ψ s�Ψ t

� � ~Xs�1
~X
0
s�1þvs ~X

0
s�1

h i
Ω�1

x;t

	 

þop 1ð Þ; ð136Þ

under our assumptions. Let Y4;t ¼ vt ; ~Xt�1; ς1;…; ςT
	 


and, following steps in the proof of Theorem 3,

T �1=2
XT
t ¼ 1

wtvec Ψ̂ t�Ψ t

	 

¼ T tv

4;1þT tv
4;2þop 1ð Þ; ð137Þ

where

T tv
4;1 ¼ T �3=2

XT

t ¼ 1
Kb 0ð Þwtvec vs ~X

0
s�1Ω

�1
x;t

	 

ð138Þ

and

T tv
4;2 ¼ T �3=2

X
so t

ϕ4;T Y4;s;Y4;t
� �

; ð139Þ

where ϕ4;T Y4;s;Y4;t
� �¼φ4;T Y4;s;Y4;t

� �þφ4;T Y4;t ;Y4;s
� �

and

φ4;T Y4;s;Y4;t
� �¼Kb

s�t
T

� 

wtvec Ψ s�Ψ t

� � ~Xs�1
~X
0
s�1þvs ~X

0
s�1

h i
Ω�1

x;t

	 

: ð140Þ

T tv
4;1

�� ��¼ op 1ð Þ under our assumptions by similar steps as in the proof of Theorem 3. By Lemma D.2,

T tv
4;2 ¼

ffiffiffi
T

p
� T �1

XT
t ¼ 1

ϕ4;T Y4;t
� �þR4;T

" #
þop 1ð Þ; ð141Þ

where ϕ4;T Y4;t
� �¼ E φ4;T y4;Y4;t

� �h i
þE φ4;T Y4;t ; y4

� �h i
and y4 ¼ v; ~X ; τ1;…; τT

	 

. If we define ς� t to be ς1;…; ςT

� �
excluding ςt

and similarly for τ� t , then

E φ4;T y4;Y4;t
� �h i
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¼ E Kb τt�ςt
� �

wt τ� tð Þvec Ψ τtð Þ�Ψ ςt
� �� � ~X ~X

0 þv ~X
0h i
Ωx ςt
� ��1

	 
h i
¼
Z 1

0
⋯
Z 1

0
Kb τ�ςt
� �

wt ς� t

� �
vec Ψ τð Þ�Ψ ςt

� �� � ~X ~X
0 þv ~X

0h i
Ωx ςt
� ��1

	 

dςt dς� t

¼
Z 1

0
⋯
Z 1

0
wt ς� t

� �
dς� t

" #Z 1

0
Kb τ�ςt
� �

vec Ψ τð Þ�Ψ ςt
� �� � ~X ~X

0 þv ~X
0h i
Ωx ςt
� ��1

	 

dςt

¼
Z 1

0
⋯
Z 1

0
wt ς� t

� �
dς� t

" #Z τh� 1
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Similarly, it can be shown that

E φ4;T Y4;t ; y4
� �h i

¼O br
� �þo br

� � ð143Þ

and that
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T

p
�R4;T ¼ op 1ð Þ under our assumptions, so that
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wt is a function of Φ ¼ R 1
0 Φ τð Þ dτ and μ ¼ R 1

0 μ τð Þ dτ and from Eqs. (132) and (133) we have that
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with wμ
T ¼ IK and
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with wΦ
1 ¼ 0. Thus, we have that
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and so using Theorem 3 the asymptotic variance is
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